

PhysiMUX IPS

Intrusion Detection System & Intrusion Prevention System

User Guide

Rev 1.0

Mar 2022

Mar 2022

Copyright (C) 2022 by Sital Technology Ltd.

All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of Sital Technology Ltd.

Mar 2022

Table of Contents

1	Intr	roduction	
	1.1	Scope	6
	1.2	Audience	6
	1.3	Reference	6
	1.4	Support	6
2	Con	ncept & High Level Workflow	7
2 3	Con IPS	ncept & High Level Workflow	7
2 3	Con IPS 3.1	Application	
2 3	Con IPS 3.1 3.2	Application ISP main window Event log window	

Mar 2022

1 Introduction

The PhysiMUX IPS (Intrusion Prevention System) device connects to a dual redundant MIL-STD-1553 bus and to a Windows host computer through a USB connection.

This device constantly monitors the 1553 bus and its data to detect anomalous data and optionally protect the 1553 BC, RT or Monitor terminal against such data.

Anomalous data can be the result of either "spoofing" (impersonation) of a Bus Controller (BC) or Remote Terminal (RT), a denial-of-service attack (DoS), or wiring faults such as open and short circuits or disconnections.

In addition to the detection of anomalous data, PhysiMUX IPS can invalidate messages resulting from impersonation attacks and thereby prevent the damage an attacker is attempting to do.

Mar 2022

Sital's IPS (Intrusion Prevention System) Windows PC uses the PhysiCAN's USB 2.0 link to monitor and display the information gathered by the PhysiMUX IPS and present the fingerprinting information (on the left) and the event logger (on the right) with the following image:

🛃 Sital IPS physiMu	x B 800058 Ver=	0x1532					— 🗆 ×	Events Log					- ×
Tolerance 10	Set	IPS	0#			Rese		Index	TimeTag	Туре	Bus	KillingMessage	Command
	out						<u> </u>	1	191667	Main_Bus	В		1c
Name	Bus	Sattribute	PPattribute	Fattribute	Dattribute	Rattribute	PTDRattribute	2	191667	Main_Bus	A		24
BC	A	592			252	252	538	3	192094	Main_Bus	A		10
BC	В	590	12	42	6	248	1692	4	192094	Main_Bus	В		16
RT 30	A	590	0	6	252	252	540	5	209056	Main_Bus	A		1c
RT 30	В	592	0	4	6	246	1068	6	209442	Main_Bus	В		1a
								7	209488	Main_Bus	A		24
								8	209488	Main_Bus	В		1e
								9	217386	BC_Imperso	В		f020
								10	217386	RT_Imperso	В		f000

2 Scope

The scope of this document is the description of and operating instructions for the application program running on a Windows PC that communicates with the PhysiMUX IPS device through its USB connection.

2.1 Audience

The principle audience for this document is engineers with requirements for MIL-STD-1553 bus cyber-security solutions.

2.2 Reference

The PhysiMUX IPS software was developed based on "SnS1553 HSID V4 IPS.pdf" – This document describes the Hardware/Software Interface document of the PhysiMUX IPs hardware.

2.3 Support

If you have any question or require further assistance, use any of the following methods to contact Sital customer support:

- By Email: support@sitaltech.com
- By Phone: +972-9-7633300
- By Fax: +972-9-7663394

3 Concept & High-Level Workflow

The PhysiMUX IPS (Intrusion Prevention System) device connects to High-Level a dual redundant MIL-STD-1553 bus and to a Windows host computer through a USB connection. Please do not connect through a USB hub. Instead, always connect the PhysiCAN device directly to a PC or laptop port.

An FTDI driver should be installed on the PC or laptop computer. This is provided with the installation).

Sital's IPS application program communicates with the PhysiMUX IPS device through the FTDI USB driver.

4 **IPS Application**

Unzip the software package to any directory. The files in the software package folder include some GUI DLL files, Sital_USB.dll and IPS.EXE as well as this document.

Start the application by running IPS.exe

If the device is not connected or the communication between the device and the Application is disconnected, an error message will appear in the window.

4.1 **ISP** main window

Bus Sattribute PP attribute Fattribute Dattribute Rattribute PTDRattribute BC A 592 0 6 252 252 538 BC B 590 12 42 6 248 1692 RT 30 A 592 0 6 252 252 540 RT 30 B 592 0 4 6 246 1068
Name Bus Sattribute PPattribute Fattribute Dattribute Rattribute PTDRattribute BC A 592 0 6 252 252 538 BC B 590 12 42 6 248 1692 RT 30 A 590 0 6 252 252 540 RT 30 B 592 0 4 6 246 1068
BC A 592 0 6 252 252 538 BC B 590 12 42 6 248 1692 RT 30 A 590 0 6 252 252 540 RT 30 B 592 0 4 6 246 1068
BC B 590 12 42 6 248 1692 RT 30 A 590 0 6 252 252 540 RT 30 B 592 0 4 6 246 1068
RT 30 A 590 0 6 252 252 540 RT 30 B 592 0 4 6 246 1068
RT 30 B 592 0 4 6 246 1068

- The Windows Title shows the version number of the device.
- The Table shows the parameters (attributes) for each terminal on the bus. The parameters include the S attribute, PP attribute, F attribute, D attribute, R attribute and pTDR attribute. Each attribute is a unique characteristic for each terminal on the bus. The IPS determines the attribute data by monitoring and averaging data collected during the approximate 4-second learning period following power-up. Thereafter, it maintains and occasionally updates the attribute (parameter) values. These values are used occasionally to determine if a violation has occurred. The table can be sorted by name or bus. This is done by clicking on the column title.
- Tolerance Following the learning period, the attribute values for all received messages are compared against the set of stored attribute values for the respective BC or RT. For each received message, if the difference between the received and expected value(s) of one or more attributes exceeds the tolerance value limit, the IPS will determine that the message is anomalous.
- Reset button resets the device and clears its memory. In addition, the table and Log events table will be cleared.
- IPS ON/OFF button when the IPS is running (ON), it will invalidate messages that are determined as being anomalous.

- The data of this table is saved to a log file in .csv format. The file is located in the running folder under Logs directory. It is saved every 5 minutes.

4.2 Event log window

	rimerag	Type	Bus	KillingMessage	Command
1	191667	Main_Bus	В		1c
2	191667	Main_Bus	Α		24
3	192094	Main_Bus	Α		10
4	192094	Main_Bus	В		16
5	209056	Main_Bus	A		1c
6	209442	Main_Bus	В		1a
7	209488	Main_Bus	Α		24
8	209488	Main_Bus	в		1e
9	217386	BC_Imperso	в		f020
10	217386	RT_Imperso	В		f000

This window shows the events that were detected by the PhysiMUX IPS device.

The table can be sorted by clicking on the column title (double click to return to default).

- Time Tag (device time) of detection number of microseconds since reset or power-up.
- The type of event : BC_Impersonation, RT_Impersonation, Bus_DoS, RT_DoS,
 Main_Bus_Wiring_Disconnection_Error, Main_Bus_Wiring_Short_Error, Stub_Short_Error.
- Bus Identifies the bus the message was sent over.
- KillingMessage If PhysiMUX IPS invalidated this message, a "V" will appear.
- Command Identified the command where this event (anomaly) was detected. The format is 16-bit hex representation of the 1553 Command or Status word.
- The Events are saved in a Log file in csv format. The file is located in the running folder under Logs directory.

4.3 IPS Debug window

🖳 ips	S Debug		_		×
Start	Address 1000	Read Memory	Stop Rea	d	
Write	Address	Write Data		Write Memory	y
	Adress	Data			^
•	1000	250			
	1001	6			
	1002	FC			
	1003	216			
	1004	FFFF			
	1005	FFFF			
	1006	FFFF			
	1007	FFFF			
	1008	250			
	1009	206			
	100A	FA			
	100B	222			
	100C	FFFF			
	100D	FFFF			
	100E	FFFF			
	100F	FFFF			
	1010	24E			\sim

Start this window by pressing Ctrl+Shift+D on the keyboard when the focus is on main window.

This window shows the content of the device memory.

- Start Address The Address in hex from which to start reading.
- Read Memory button Start reading the memory continuously (every 500 milliseconds). For each such instance of this operation, 32 bytes are read.
- Stop Read button Stop the reading thread. The displayed data will remain.
- Write Address The address in hex to which we want to write data.
- Write Data The data in hex to be written.
- Write Memory button Initiates the memory write command.