
 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 1

MCX API
for Sital Tester IP Core Device

Programmer and Reference Guide

Rev 2.27

March 2020

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 2

Copyright (C) 2020 by Sital Technology Ltd.

All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted in

any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior

written permission of Sital Technology Ltd.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 3

Table of Contents

1 Introduction .. 6

1.1 Scope .. 6

1.2 Audience ... 6

1.3 Related Documentation .. 6

1.4 Support ... 7

1.5 About the MultiComBox ... 7

2 Concept & High Level Workflow ... 8

2.1 Entities Relations .. 8

2.2 Cyber Attack Emulation .. 9

2.3 Asynchronous message mode .. 12

3 Configurations ... 13

3.1 Protocols & Modes ... 13

3.2 Devices .. 15

4 MultiComBox Hardware .. 16

4.1 USB Data .. 16

4.2 USB Connection ... 16

4.3 RS485 (and EBR1553) Connection ... 19

4.4 ARINC429 Connection... 21

4.5 PCI MIL-STD-1553 + RS485 Connection .. 22

4.6 PCI ARINC429 Connection .. 23

5 API Reference .. 24

5.1 mcx_Initialize .. 24

5.2 mcx_SetFpgaFileDirectory .. 25

5.3 mcx_EnableRts .. 26

5.4 mcx_Get_EnabledRts .. 27

5.5 mcx_EnableRius .. 28

5.6 mcx_Create_BusList .. 29

5.7 mcx_Create_BusList_Element .. 30

5.8 mcx_Create_BusList_Element1 .. 32

5.9 mcx_Create_Element_DataBlock ... 34

5.10 mcx_Map_DataBlock_To_Element ... 35

5.11 mcx_Map_Element_To_BusList.. 36

5.12 mcx_Start .. 37

5.13 mcx_Start_RateMode ... 38

5.14 mcx_Stop .. 39

5.15 mcx_Stop2 .. 40

5.16 mcx_Get_Element_Results ... 41

5.17 mcx_Get_Element_Results_PP194 ... 44

5.18 mcx_Element_DataBlock_Write ... 47

5.19 mcx_Element_DataBlock_Read .. 48

5.20 mcx_DevicePassiveTimeStarted ... 49

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 4

5.21 mcx_GetDescriptors ... 50

5.22 mcx_Set_Error .. 51

5.23 mcx_Reload .. 54

5.24 mcx_SetFrameTime .. 55

5.25 mcx_MapDevices .. 56

5.26 mcx_Free .. 57

5.27 mcx_FreeBusList ... 58

5.28 mcx_SetUserPort .. 59

5.29 mcx_GetUserPort ... 60

5.30 mcx_GetCurrentFrameNumber .. 61

5.31 mcx_Element_SetGap... 62

5.32 mcx_Element_SetRate .. 63

5.33 mcx_Grip2_GetTemperature .. 64

5.34 mcx_GetTemperature... 65

5.35 mcx_Get_Version ... 66

5.36 mcx_wm_GetNextSymbol .. 67

5.37 mcx_wm_GetNextMsg_1553_194 ... 68

5.38 mcx_wm_GetNextMsg_H009 ... 70

5.39 mcx_Restart .. 72

5.40 mcx_BusList_UpdateData ... 73

5.41 mcx_GetMonitorErrorsDescription .. 74

5.42 mcx_GetReturnCodeDescription .. 75

5.43 mcx_GetSimulatorErrorsDescription .. 76

5.44 mcx_SetConfigurationRegisters .. 77

5.45 mcx_GetConfigurationRegisters ... 79

5.46 mcx_GetTime .. 82

5.47 mcx_SetTime .. 83

5.48 mcx_ RS485_Setup ... 84

5.49 mcx_RS485_Put .. 85

5.50 mcx_RS485_Get .. 86

5.51 mcx_RS485_GetNumberOfReceivedWords ... 87

5.52 mcx_RS485_GetStatus .. 88

5.53 mcx_A429_Channel_GetCount... 89

5.54 mcx_A429_Channel_GetInformation ... 90

5.55 mcx_A429_Channel_Open ... 91

5.56 mcx_A429_Channel_Close ... 92

5.57 mcx_A429_Channel_SetConfigRegister.. 93

5.58 mcx_A429_Channel_GetConfigRegister ... 95

5.59 mcx_A429_Channel_GetStatusRegister ... 97

5.60 mcx_A429_Channel_ Receive ... 99

5.61 mcx_A429_Channel_ Send ... 100

5.62 mcx_A429_GetRxWordsPending .. 101

5.63 mcx_A429_Card_SetConfiguration... 102

5.64 mcx_GetPciProductIds .. 103

5.65 mcx_A429_Pci_Channel_GetCount .. 104

5.66 mcx_A429_Pci_Channel_GetInformation .. 105

5.67 mcx_A429_Pci_Channel_Open ... 106

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 5

5.68 mcx_A429_Pci_Channel_Close ... 107

5.69 mcx_A429_Pci_Channel_SetConfigRegister ... 108

5.70 mcx_A429_Pci_Channel_GetConfigRegister .. 110

5.71 mcx_A429_Pci_Channel_GetStatusRegister .. 112

5.72 mcx_A429_Pci_Channel_ Receive .. 114

5.73 mcx_A429_Pci_Channel_ Send ... 115

5.74 mcx_A429_Pci_GetRxWordsPending ... 116

5.75 mcx_A429_Pci_Card_SetConfiguration .. 117

5.76 mcx_GetLicenseDescription ... 118

5.77 mcx_SetCyberAttack ... 119

5.78 mcx_TestExternalLoopback_DevicetoDevice ... 120

5.79 mcx_Send_AsynchMsg1 ... 121

5.80 mcx_Send_AsynchMsg2 ... 122

5.81 mcx_Get_Asynch1_Results ... 123

5.82 mcx_Get_Asynch2_Results ... 125

5.83 mcx_Element_UpdateData ... 127

5.84 mcx_Get_Buslist_TransmittedElements ... 128

5.85 mcx_Element_UpdateStatuses ... 129

5.86 mcx_SetRTsResponseDelay .. 130

5.87 mcx_ TransmiteSingleMessageOnce .. 130

6 Service Functions ... 132

6.1 Mcx_Read ... 132

6.2 Mcx_Write .. 133

6.3 mcx_Transmit_1553_Message ... 134

6.4 mcx_Transmit_1553_Messages ... 135

7 Code Samples .. 136

7.1 MIL-STD-1553 ... 136

7.2 H009.. 136

7.3 PP194 (WB194) ... 137

7.4 RS485 .. 138

7.5 Arinc 429 ... 140

7.6 MIL-STD-1760 ... 142

8 Appendices.. 144

8.1 Appendix A – Returned Error Codes ... 144

8.2 Appendix B – mcx_A429ChannelInfo.. 147

8.3 Appendix C – External Loopback Device to Device ... 148

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 6

1 Introduction

1.1 Scope

This document is the Programmer and Reference Guide for programming with the MCX Tester’s API for the the

following protocols; Mil-Std-1553, WB194 (pp194), H009, RS422/485.

MCX API serves the following devices

MultiComBox

Grip2

PXI (cPCI)

1.2 Audience

This document assumes that the reader is familiar with the above specified protocols.

1.3 Related Documentation

TESTER1553 User Manual Ver62

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 7

1.4 Support

If you have any question or require further assistance, use any of the following methods to contact Sital

customer support:

 By Email: support@sitaltech.com

 By Phone: +972-9-7633300

 By Fax: +972-9-7663394

1.5 About the MultiComBox

The MultiComBox™ system connects a standard USB 2.0 port to one or two dual-redundant Mil-Std-1553

buses.

Depending on the loaded firmware and configuration, MultiComBox™ can operate as Bus Controller (BC),
Remote Terminal (RT), Monitor Terminal (MT), Multi-RT or as a full Mil-Std-1553 Tester.

Depending on model, MultiComBox also supports additional avionics protocols like WB194, H009 and

Extended Bit Rate 1553 (EBR1553).

The system uses the high-speed USB 2.0 port from any desktop or laptop computer; loaded with Windows™ XP
and higher.

As a 1553 bus tester, the MultiComBox™ unit provides full MIL-STD-1553B test, simulation and bus analysis

capability in a compact self-contained unit. It supports concurrent Bus Controller (BC) and up to 31 Remote

Terminals (RT) with Bus Monitor (MT). Full error injection capability is available in BC and RT modes, with full

error detection in BC, RT and MT modes.

The unit is supplied with Dynamic Link Library (DLL), together with a Windows Graphical User Interface (GUI),

which includes a Monitor and Simulator in the Composer application, providing a user-friendly software tool

for all 1553 set-ups, simulation, data management and storage.

It is possible to create your own testing program, using the supplied DLL and its functions.

mailto:support@sitaltech.com

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 8

2 Concept & High Level Workflow
The MCX toolbox of API functions are intended to a SW developer who wishes to perform serial avionics bus

communications through Sital Technology’s MultiComBox in one of its hardware implementations, i.e. in
USB, PCI, cPCI, PCIe and others.

The target of the SW development is to load the HW (Hardware) with the messages to transmit, and set it to

go.

The HW supports a stack of message elements, where each element manages a single message, and works

with a data buffer to transmit or receive. The SW equivalent of this HW is a BusList of Elements, and each

Element points to a data buffer.

The API functions let you manage multiple devices.

You may also manage multiple BusLists each one having a different list of Elements.

You may create multiple DataBlocks, and map these DataBlocks to the Elements.

The Elements are mapped to the bus list, and the order of which is the order of the messages on the bus.

For the purpose of this guide;

BusList – relates to a Frame.

Element – relates to Message

DataBlock – relates to Message’s data

At minimum:

1. Initialize a device.

2. Create a single BusList (Frame).

3. Create a single Element (Message).

4. Create a single DataBlock (Message’s Data).
5. Map the DataBlock to the Element.

6. Map the Element to the BusList.

7. Start running the BusList on a device.

8. Collect run results.

It is advised to start the coding from examples which are provided.

2.1 Entities Relations

User can create stacks of BusLists (Frames), Elements (Messages) and DataBlocks (Messages Data).

Each entity is created by its designated create function (mcx_Create_BusList(…),
mcx_Create_BusList_Element(…), mcx_Create_Element_DataBlock(…)).

BusLists

A BusList (Frame) entity can contain a single Element (Message) and up to 100 Elements.

BusList is the basic entity that a device is running on a ‘mcx_Start(…)’ call. When calling the mcx_Start, the

specified BusList must exists and contain at list a single valid message.

Assigning an Element to a BusList is done by ‘mcx_Map_Element_To_BusList(…)’ function.

Un-assigning an Element from a BusList is done by ‘mcx_UnMap_Element_From_BusList(…)’ function.

Element

An Element (Frame) entity contains Commands (Command2 serves RT to RT Element structure) and Statuses. It

can also point to a DataBlock. Once a Device is set to 1553 and PP194 Protocols, the Options of an Element

specifies the Element’s Protocol and selected Bus for running.
Bus BusA = 0x80.

BusB =0 (Default)

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 9

Pp194 messagetype For pp194 – 0x0004.

For 1553 - 0 (Default)

Mapping a DataBlock (Message’s data) to an Element (Message) is done by

‘mcx_Map_DataBlock_To_Element(…)’ function.
Un-mapping a DataBlock from an Element is done by ‘mcx_UnMap_DataBlock_From_Element (…)’ function.
Note that Element structure, mapping and data assigning is identical for all supported Protocols. It is the User

reposnsibility to map relevant data and data size, relevant Commands and so on according to the desired

Protocl.

DataBlock

DataBlock (Message’s data) entity contains an array of data words. The array and its size is assigned by the

User.

The DataBlock entity structure and data is identical for all supported Protocols.

Note that it is the User’s responsibility that DataBlock’s data buffer and data buffer’s size match the Protocol’s
limitations.

2.2 Cyber Attack Emulation

Note – Cyber Attack capabilities can be used via API function calls or by Composer. The Composer currently

supports Attack type 1.

2.2.1 Introduction

Sital Technology’s MultiComBox has been elevated to being able to emulate a cyber-attack for multi-drop bus

protocols.

Development groups of aerospace products that would request to protect their products from cyber-attacks

may use this emulation mode of operations to attack their product under development, and enhance their

counter measures and firewalls.

For activating the following attack modes, refer to function mcx_SetCyberAttack(..).

2.2.2 Supported Attacks in Emulation Mode

2.2.2.1 Periodic Attack - After Period of Time

This type of attack would follow this algorithm:

1. Wait for predefined period of time.

2. Wait for bus idle on both bus A and B of the first message.

3. Transmit all frame messages to the bus based on the frame rate parameters.

This attack allows the attacker to delay an attack, and then be persistent with it.

Resources: the frame length counter is used for the delay. 16 bits, two resolutions, one with LSB=65

milliseconds second with LSB=100 us. Maximum delay for LSB=65 ms is 65ms X 64K => 4295 seconds which are

71 minutes => 1 hour and 10 minutes.

Rate of attack: Message gap counter of all messages in the frame. This is typically 16 bits gap of micro seconds,

up to a total of 65 ms.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 10

Example attack: Wait for 10 minutes, and then transmit broadcast reset time tag every 65 milliseconds.

In this case there would be a frame with one message with message gap time set to 0xFFFF, and frame length

counter set to 10x60x(1000/65) = 9230.

Set attack type to 1 to enable this type of attack.

2.2.2.2 Triggering Command

This type of attack would follow this algorithm:

1. Wait for BC to transmit a particular command for N times.

2. Wait for destination buses idle, and transmit frame (without frame delay).

This attack allows the attacker to wait for a particular event on the 1553 bus in the form of a specific message,

count N such occurrences, and then transmit the preplanned frame to the bus.

Resources: the frame length counter is used for N. N can be in the range of 0 to 64K. 0 would transmit without

delay, 1 would indicate right after first occurrence of trigger message, 2 would wait for 2 such occurrences…

The Sync pattern register (0x46) defines the triggering command.

The attacker chooses to wait for an event such as a particular station (RT) becoming armed and replying to the

bus. When that event happens, the attack includes transmitting predefined messages to that particular RT, to

damage its operation.

2. Wait idle

Bus

Time

3 messages

per frame

1. Time to first attack

3. Retransmit

Total messages gaps
Bus

Time

Wait for N occurrences of a message

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 11

Set attack type to 2 to enable this type of attack.

2.2.3 External Loopback Tests

The testers contain two types of external loopback tests; Device to Device and Bus A to Bus B within a single

device.

External Loopback Test – Device to Device

General notes and requirements:

- Requires at least 2 devices – PMC and MultiComBox devices. This test does not apply to Grip2 tester

devices.

- Required wiring scheme can be found in {TBD}

- Connection is done between 2 devices where Device 0 Bus A is connected to Device 1 Bus A and

Device 0 Bus B is connected to Device 1 Bus B.

External Loopback Test – Single Device, Bus A to Bus B

General notes and requirements:

- Requires a single device – this test applies to all tester device types.

- Required wiring scheme can be found in {TBD}

- Connection is done within a single device between Bus A and Bus B.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 12

2.3 Asynchronous message mode

As of March 20th 2018 a new Async message sending mode was added to the transmission capabilities of MCX

BC.

This new mode of operation allows the controller to inject a new message instantaneously to the

transmissions on the bus.

1. If the MCX is running and transmitting a bus list, say message #3, and the Async is initiated, then it will be

transmitted ONCE after #3 ends, but before message #4.

2. If MCX is running, but it is in a passive phase, i.e., between two frames, the message would go out instantly

with no delay, and the first message on the next frame might be delayed until the Async message has been

transmitted.

3. If the MCX is in idle mode, i.e. no bus lists are running, the Async message would be instantly transmitted

ONCE and MCX returns to idle mode.

4. If the MCX is in idle mode, i.e. no bus lists are running, the Async message would be instantly transmitted

ONCE and if during transmission, bus-list transmission is engaged, MCX would start the bus-list transmission

back-to-back with the Async message completion.

Some avionic systems make use of asynchronous messages, and the above method facilitates this mode to

MCX.

The usage of Async message on IDLE simplifies the procedure for sending messages, and avoids using bus lists.

The controller can transmit any message one after the other, and each can be different from the previous one.

This mode of operation might be useful for some application that want the controller intimately managing the

bus list. Please note that if message results are tested, there would be no bus activity periods between two

messages, depending on this result analysis takes.

An Async message is defined by a standard message block format, but one which resides between address 0

and 7. Writing word 7 initiates the transmission.

A second Async 2 message is provided in addresses 8..F. Using these two async messages, one can work in pipe

line mode, and achieve very high bus utilization even if using USB interface.

It is recommended that the data blocks and state blocks be located after the last block. Assuming there are 64

blocks supported, block location 65 and 66 should be used.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 13

3 Configurations

Note – the minimal virtual requirement for local PC: a minimum of 8K (8065) MB.

In order to access and modify (Windows7):

My Computer --> Right click, Properties --> Advanced System Settings --> Advanced Tab--> Performance, press

Settings button --> Advanced Tab --> Change button --> Initial Size 8065

3.1 Protocols & Modes

The device can be initialized to 1553 / PP194 mode (default) or H009 or Multiple RTs only mode.

The workflow in SW is the same for all modes of operation, the difference is the signaling on the bus wires for

H009 or 1553/PP194.

For Multiple RT mode (MultiRT), the workflow is the same, except that when device Start command is issued,

the MultiRT does not start transmission, but rather waits for an incoming message from an external bus

controller.

When a message arrives and that RT (or RIU) is enabled for simulation, it is scanned in the bus list of elements,

and if a match is found, that element will service the message, either transmitting data or receiving it. If no

match is found zero data is transmitted, and no data is stored.

NOTE – on MultiRT only modes, the Tester disragards any bus selection (selected by the user) and answers to

messages on both buses.

3.1.1 Frame Gap Mode

When setting a frame to run in a Gap mode, each of the frame messages can define a gap, which is the amount

of microseconds from the beginning of this message to the beginning of the next message. A value could be in

the range of 0 us to 64K us =~ 65 ms.

NOTE – this mode was the mode available in the Tester API and UI up to Release 4.3.0.32 (release on April 18,

2019).

3.1.2 Frame Rate Mode

For each message define its rate. Possible rates are

0 – skip this message.

1/1 – send every frame.

1/2 – send every second frame.

1/4 – send every forth frame.

1/8 – send every 8th frame.

:

1/N – Where N is a power of 2 and Nmax = 2^14, i.e., once every 16,384 frames.

15 – send only once. Core will change to 0 after transmission.

If two stack entries point to the same message, than the resulting rate of that message would be higher. The

resulting rate would be the sum of both rates. For example 1/4 + 1/16 would be 5/16, which is almost 1/3 of

the frame rate.

The HW core sequences the messages at lower rates, such that for each frame, only the 1/1 rate messages are

transmitted along side only ONE slower rate messages. Such that 1/N (N>1) messages and 1/M (M>1, N<>M)

messages are not transmitted in the same frame.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 14

The HW core provides a register that indicates the frame number. After start command this frame counter

starts counting up until the operation is stopped. The host can determine which message is transmitted on

which frame using a simple equation. This will allow the host to update the transmitted data buffers on time.

It might happen that the transmission length in time of all messages of rate 1/1 and messages of lower rate in

a specific frame sum up to a total length which is too long for the frame length. If one of the following frames

is not crowded, the HW core supports message skew definition. A specific stack entry message can be skewed

forward 1 to 15 frames ahead from its designated frame.

Example

Definition.

Typically MIL-STD-1553 (“MuxBus”) has a frame time definition.
The frame is a period of time, typically 10 or 20 milliseconds long.

Several messages are transmitted every frame. These messages manage the system.

In more complex MuxBus systems, not all messages are transmitted every frame. For example, the direction

that a Radar Antenna is pointing at, should be transmitted every frame, i.e. 50 times a second, for display units

to display target position. On the other hand, button position on one of the panels can be transmitted twice a

second, since its not practical that the pilot would press that button faster than that.

The Operational Flight Program (OFP) programmer tailors the frames based on the Interface Control Document

(ICD) that defines all message types required. In the ICD, each message is tagged by its usage rate.

Existing sequencing mechanisms.

For example, let’s define a system with a rate of 50 frames per second (50 Hz).
Message A50 and B50 are transmitted every frame.

Message E25 is transmitted every 2nd frame.

Message G125 is transmitted every 4th frame.

Frame #5 repeats frame #1 and so on…
As exampled, message G125 is transmitted in the frame that does not serve 25 Hz messages. This is done for

load balancing as explained below.

Existing Bus Controllers (BC) use a stack of message entries to control their message sequencing. The Host CPU

updates the stack, and initiates the bus controller to execute the messages automatically and autonomic.

Each Stack entry points to a location in its memory where the actual message command and words are stored.

Existing BCs define minor and major frames. In the above example, there is one Major Frame that is 4x20ms =>

80ms, and 4 minor frames, each one take 20ms.

The stack would look like this: A50 B50 E25 A50 B50 G125 A50 B50 E25 A50 B50.

This list would be transmitted every 80ms, BUT there need to be a tool to force a gap between the end of E25

of frame #1 and A50 of frame #2 in order to make frame #1 20ms

in length. So, existing BCs also hold in their stack a ‘message-length’ parameter. So the stack would now look
like (message-length in parenthesis):

A50 (1ms) B50 (1ms) E25 (18ms) A50 (1ms) B50 (1ms) G125 (18ms) …
Message-length parameter in stack is a way of composing a minor frame of 20ms.

This technique starts falling apart when lower rate messages have to be sequenced. If the slowest message is

50Hz/64 => 0.78 Hz then a complete list of more than a second has to be stacked. Most of the stack entries

point to the very same message, it’s simply a very big stack.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 15

3.1.3 Additions

As of Composer version 4.3.1.18, the following protocols and modes are available for licensed devices:

RS485, 4 channels (MCX B|C)

Arinc429, 4 channels (MCX C)

Scope (MCX C)

NOTE – The Scope feature can be coupled and used via Composer with any of the following – 1553 | Arinc429

| RS485.

NOTE II – The following protocols can be used individually via Composer – 1553 | Arinc429 | RS485.

3.2 Devices

3.2.1 MultiComBox

MulitComBox or MCX is a tester device. This device type requires loading a compatible .rbf firmware file. The

file is loaded via USB on initialization.

Each MCX device contains 2 Mil-Std-1553 devices (Bus A and B for each of the 1553 devices) or a single EBR

1553 device or a H009 device.

3.2.2 PMC

PMC device is a PCI tester device that contains a static firmware version. Upgrading the firmware can be done

by reflashing the PMC device via Sital’s reflasher.
Each PMC contains 1 | 2 | 4 Mil-Std-1553 devices (Bus A and B for each of the 1553 devices) or a 1 | 2 EBR

1553 devices or a combination of 2 Mil-Std-1553 and 1 EBR 1553 devices.

The PMC can also contain 1 | 2 H009 devices (Bus A and Bus B).

In the configuration of 2x1553&1xEBR, the ordering of the devices is as follow; devices 0 and 1 are 1553 and

device 2 is EBR device.

3.2.3 Grip2

Grip2 is a light weight tester device that contains a static firmware version. Upgrading the firmware can be

done by reflashing the Grip2 device via Sital’s reflasher.
The Grip2 contains a single Mil-Std-1553 device (Bus A and B).

3.2.4 PCI

As of McxAPI version 4.1.1.53, the McxAPI supports in 2 types of PCI devices: PCI 1553 (optionally with RS485)

and Arinc429 (with 8Tx channels and 16 Rx channels or 12Tx channels and 16Rx channels).

For using the Arinc429 PCI card, use the ‘mcx_A429_Pci_’ set of cuntions insead of ‘mcx_A429_’
functions, described in the document

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 16

4 MultiComBox Hardware

4.1 USB Data

MultComBox™ connects to a host PC via a USB 2.0 connection. This connection uses high speed 480Mbps data

transfer, and thus requires an appropriate cable. Please use only the provided USB cable. Using other USB

cables may cause the unit not to work properly or not to work at all.

The USB cable should be connected to the USB connection and to any USB 2.0 port of your PC.

4.2 USB Connection

Figure 1: MultiCom Panel

The MultiCom Panel includes a 20 pin Mini-D-Ribbon connector (3) and two LED indicators (1 and 2). The

MultiCom connectors in used for the 1553 and RS-485 connections and the LED indicators are used to monitor

the activity in each 1553 module.

In addition, the unit comes with a cable assembly that, according to the configuration you purchased, contains

4 Triax connectors for 1553 and 1 female 9 pin D-type connector for RS 485, or 2 Triax connectors for a single

Dual-Redundant 1553 channel. These connectors are marked with accordance to the bus they should be

connected to.

1x 1553 channel

Module 1-A

Module 0-B

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 17

2 x 1553 and 4 x Serial channels

Figure 1: MultiCom Cable Assemblies

This cable should be connected to the “MultiCom” connector at the MultiComBox unit.

A MultiComBox unit contains an internal termination of 240 Ohm per each 1553 channel. Therefore, for a very

simple test environment it is possible to connect the MultiComBox 1553 ports directly to the unit that is under

test.

Figure 1: Direct connection to unit under test

Note that this is not a standard/recommended way to use Mil-Std-1553. Yet, for a simple test environment, if

you plan to test your unit for its protocol capabilities, then this would be the simplest way to use

MultiComBox.

If you wish to connect via a 1553 coupler, then a simple Mil-Std-1553 test environment is typically connected

in the following way:

Figure 1: Mil-Std-1553 connection environment for single channel, via short stubs

When a long cable is required, or if more units need to connect to the bus, then it is required to connect more

than one coupler. Such connection will typically be done in the following way:

To Unit Under Test

Bus A

Bus B

Coupler

78 Ohm

Terminator

To Unit Under Test

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 18

Figure 1: Mil-Std-1553 connection environment for single channel, via long stubs

In this example, only Bus 1A is used. When you need to connect other busses as well, for example Bus 2A, you

would need to duplicate this connection, using an additional 1553 Coupler and cables.

MultiComBox™ enables you to connect up to two dual-redundant Mil-Std-1553 channels. These are marked at

the cable assembly as “Module 0-A”, “Module 0-B”, “Module 1-A” and “Module 1-B”. When operating
MuxSim™ and MuxMonitor™ software you will notice that the two channels are defined as Modules –

“Module 0” and “Module 1”.

 Module 0-A represents BUS A in Module 0.

 Module 0-B represents BUS B in Module 0.

 Module 1-A represents BUS A in Module 1.

 Module 1-B represents BUS B in Module 1.

When operating a Dual-Redundant environment, you should not connect Module 0-A and Module 0-B on the

same 1553 Coupler, nor Module 1-A and Module 1-B. There must be a complete duplication of the connection

in the following way:

To Unit Under Test

Coupler

78 Ohm

Terminator

Coupler

78 Ohm

Terminator

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 19

Figure 2: Dual Redundant 1553 test environment connection.

When using both 1553 Modules on the same bus, for example – it is possible to use Module 0 as BC, RT or

MultiRT and Module 1 as Monitor Terminal, or vice-versa. In such case, channels A of both modules and

channels B of both modules can be connected to the same couplers, and so channel A of Module 0 will be

connected to channel A of Module 1, and channel B of Module 0 will be connected to channel B of Module 1.

4.3 RS485 (and EBR1553) Connection

MultiComBox™ enables up to 4 channels of RS-485. RS-485 is a two-wire, half-duplex, multipoint serial

communications channel, that can be used for serial protocols or for discrete line as an event trigger.

Coupler

78 Ohm

Terminator

To Unit Under Test

Coupler

78 Ohm

Terminator

Bus A

Bus B

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 20

The four channels of RS-485 are

 available via the Female 9 pin D-type connector in the following manner:

Figure 1: 9 Pin D-type for RS-485

These channels are also used for Extended Bit Rate 1553 (EBR1553) where applicable.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 21

4.4 ARINC429 Connection

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 22

4.5 PCI MIL-STD-1553 + RS485 Connection

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 23

4.6 PCI ARINC429 Connection

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 24

5 API Reference

5.1 mcx_Initialize

 INT16 mcx_Initialize (

 UINT16 deviceId

 UINT16 protocol

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

protocol
User Code option for setting the device to work in a protocol/state.

The following definitions can be found in McxAPI.h:

// UserCode Options

MIL_STD_1553_AND_PP194 0x0000

H009 0x0001

MultiRT 0x0002

MIL_STD_1553 0x0004

EBR_1553 0x0008

DIGIBUS_F16 0x0016

Description

Mode: Ready

This function initializes device to a protocol and state according to initialization protocol parameter. Release

any past allocations of device memory and pointers.

This function loads the FPGA to the MCX Tester device. Loading FPGA operation may last up to 8-10 seconds.

The FPGA loading action occurres on the first mcx_Initialize. Once loaded successfully, re-using mcx_Initialize

will use previously loaded FPGA.

Mode: Runtime

Since this is a “configurations and settings” function, it stops the device activities and data transfer.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 25

5.2 mcx_SetFpgaFileDirectory

INT16 mcx_SetFpgaFileDirectory (

 UINT16 deviceId

 char * fpgaFileDir

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

fpgaFileDir A string representing

Description

Mode: Ready & Runtime

This function changes the default FPGA File directory from McxAPI.dll location to the specified folder in

fpgaFileDir parameter.

If an existing and valid directory is specified, the FPGA file is loaded from the new directory location for this

device.

Note

This function must be called prior to ‘mcx_Initialize(…)’ in order to take effect.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 26

5.3 mcx_EnableRts

INT16 mcx_EnableRts (

 UINT16 deviceId

 UINT32 rtsVector

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

rtsVector RTs vector

Description

Mode: Ready

This function enable Remote Terminal simulation for up to 31 RTs according to the specified bits in the

rtsVector.

Each call of this function overwrites the enabled RTs and configers it as specified in the vector parameter.

The device ID must be within the allowed range (0 - sitalMaximum_DEVICES - 1) and in Ready Mode.

Note I: This function supports Mil-Std-1553 and H009 protocols. For pp194 (WB194) protocol, refer to

mcx_EnableRius function.

Mode: Runtime

This function is not supported in Runtime mode. In case of calling this function in Running mode an error is

returned: STL_ERR_BUSLIST_IS_RUNNING.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 27

5.4 mcx_Get_EnabledRts

INT16 mcx_Get_EnabledRts (

 UINT16 deviceId

 UINT32* rtsVector

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

rtsVector Pointer to RTs vector

Description

Mode: Ready & Runtime

This function returns a list of Remote Terminal simulated for up to 31 RTs according to the specified bits in the

rtsVector.

The device ID must be within the allowed range (0 - sitalMaximum_DEVICES - 1) and in Ready Mode.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 28

5.5 mcx_EnableRius

INT16 mcx_EnableRts (

 UINT16 deviceId

 UINT16 riusVector

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

riusVector RIUs vector

Description

Mode: Ready

This function enable Remote Terminal simulation for up to 16 RIUs according to the specified bits in the

riusVector.

Each call of this function overwrites the enabled RIUs and configers it as specified in the vector parameter.

The device ID must be within the allowed range (0 - sitalMaximum_DEVICES - 1) and in Ready Mode.

Note I: This function supports pp194 (WB194) protocol. For Mil-Std-1553 and H009 protocols, refer to

mcx_EnableRts function.

Mode: Runtime

This function is not supported in Runtime mode. In case of calling this function in Running mode an error is

returned: STL_ERR_BUSLIST_IS_RUNNING.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 29

5.6 mcx_Create_BusList

 INT16 mcx_Create_BusList (

 UINT16 deviceId

 UINT16 busList

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

busList Unique ID of BusList 0 - (MAX_BUSLISTS - 1)

Description

Mode: Ready

This function creates a BusList with a unique ID.

The ID must be within the allowed range (0 – sitalMaximum_BusLists -1). If it is not a valid BusList ID an error is

returned:

Note: In case that this ID already exists, an error is returned. In order re-create a BusList with existing ID, the

user must delete the BusList using ‘mcx_Delete_BusList’ fisrt.

Mode: Runtime

While in runtime mode, this function creates only new BusLists with new IDs. In case that the specified ID is

mapped and running an error is returned.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 30

5.7 mcx_Create_BusList_Element

INT16 mcx_Create_BusList_Element (

 UINT16 deviceId

 UINT16 element

 UINT16 command

 UINT16 options

 UINT16 Command2

 UINT16 StatusWord1

 UINT16 StatusWord2

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

element Unique ID of Element 0 - (MAX_ELEMENTS - 1)

command Unique, MIL-STD-1553 | H009 | pp194 Command word that this Element services

Options Element’s optional configuration parameter. The option is a logic OR combination of
the following configs:

Bus BusA = 0x80.

BusB =0

Pp194 messagetype For pp194 – 0x0004.

For 1553 - 0

Command2 Unique, MIL-STD-1553 | H009 | pp194 Command word that this Element services.

This Command is relevant for RT to RT and RT to Broadcast only as second RT’s
Command

StatusWord1 First status for simulated (Multi) RT / RIU responses.

StatusWord2 Second status for simulated (Multi) RT / RIU responses.

Description

Mode: Ready

Create an Element with a unique ID. The command word specified gets serviced by this Element.

In case of RT to RT or RT to Broadcast, the second RT’s command is specified in

The ID must be within the allowed range (0 – sitalMaximum_ Elements -1). If it is not a valid Element ID, an

error is returned:

Note: In case that this ID already exists, an error is returned. In order re-create an Element with existing ID, the

user must delete the BusList using ‘mcx_Delete_BusList_Element’ fisrt.

Mode: Runtime

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 31

While in runtime mode, this function creates only new Elements with new IDs. In case that the specified ID is

mapped and running an error is returned.

Notes

Note I - that specifying statuses on StatusWord1/2 it is injected and applies only to a situation when the Tester

is BC and the RT/s is set to be simulated by the Tester.

The use case for it is when testing a monitor unit (UUT) that is connected to the Tester and you want to verify

various statuses are received ok on the monitor’s side.

Note II -

Field Description

Command
MIL-STD-1553 command word #1.

Bits 11–15:

 00000 – 11110:

Case – One command word: RT ID number of the transmitting RT (data source)

Case – Two command words: RT ID number of the receiving RT (data sink)

 11111: Broadcast (BCST)

Bit 10:

 1 – transmit command

 0 – receive command

Bits 5 – 9:

 00001 – 11110: Sub-address

 00000, 11111: Mode command

Bits 0 – 4:

For either the count of data words or the mode code, depending on the value in

bits 5-9.

wCommand2
MIL-STD-1553 command word #2

(for RT-to-RT type and RT-to-broadcast type only)

Bits 11–15:

 RT ID number of the transmitting RT

 (data source)

Bit 10 must be 1

See the table in the Message Formats section of the Sital Tester-1553 User

Manual, which lists the possible commands and shows where a second RT

participates.

StatusWord1
Transmission status, if any, with most recent transmission of this message.

This status word is filled only where relevant.

StatusWord2
Reception status, if any, with most recent transmission of this message.

This status word is filled only where relevant.

file:///C:/_WORK/Sital/RESOURCES/FromNissim/Tester_v2-7-0-0_QuickUSB_Release_Installation/Release/Docs/html/struct_tester_dll___message_struct.html%23a241c97b668039c50c281d1ffccf1da08
file:///C:/_WORK/Sital/RESOURCES/FromNissim/Tester_v2-7-0-0_QuickUSB_Release_Installation/Release/Docs/html/struct_tester_dll___message_struct.html%23a04053964b2b968d3ac325e597adc21cb
file:///C:/_WORK/Sital/RESOURCES/FromNissim/Tester_v2-7-0-0_QuickUSB_Release_Installation/Release/Docs/html/struct_tester_dll___message_struct.html%23a5585d4efc5d669c9e35c464e20459adc
file:///C:/_WORK/Sital/RESOURCES/FromNissim/Tester_v2-7-0-0_QuickUSB_Release_Installation/Release/Docs/html/struct_tester_dll___message_struct.html%23add34df53238a2e71b2a7fe97e23f1a17

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 32

5.8 mcx_Create_BusList_Element1

INT16
mcx_Create_BusList_Element1 (

 UINT16 deviceId

 UINT16 element

 UINT16 command

 UINT16 options

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

element Unique ID of Element 0 - (MAX_ELEMENTS - 1)

command Unique, MIL-STD-1553 | H009 | pp194 Command word that this Element services

options Element’s optional configuration parameter. The option is a logic OR combination of
the following configs:

Bus BusA = 0x80.

BusB =0

Pp194 messagetype For pp194 – 0x0004.

For 1553 - 0

Description

Mode: Ready

Create an Element with a unique ID. The command word specified gets serviced by this Element.

The ID must be within the allowed range (0 – sitalMaximum_ Elements -1). If it is not a valid Element ID, an

error is returned:

Note: In case that this ID already exists, an error is returned. In order re-create an Element with existing ID, the

user must delete the BusList using ‘mcx_Delete_BusList_Element’ fisrt.
Note II – this function provides the capability to create a BC2RT or RT2BC commands. In order to create an

RT2RT commands, use mcx_Create_BusList_Element(..) function.

Mode: Runtime

While in runtime mode, this function creates only new Elements with new IDs. In case that the specified ID is

mapped and running an error is returned.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 33

Notes

Field Description

Command
MIL-STD-1553 command word #1.

Bits 11–15:

 00000 – 11110:

Case – One command word: RT ID number of the transmitting RT (data source)

Case – Two command words: RT ID number of the receiving RT (data sink)

 11111: Broadcast (BCST)

Bit 10:

 1 – transmit command

 0 – receive command

Bits 5 – 9:

 00001 – 11110: Sub-address

 00000, 11111: Mode command

Bits 0 – 4:

For either the count of data words or the mode code, depending on the value in

bits 5-9.

file:///C:/_WORK/Sital/RESOURCES/FromNissim/Tester_v2-7-0-0_QuickUSB_Release_Installation/Release/Docs/html/struct_tester_dll___message_struct.html%23a241c97b668039c50c281d1ffccf1da08

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 34

5.9 mcx_Create_Element_DataBlock

INT16
mcx_Create_Element_DataBlock (

 UINT16 deviceId

 UINT16 dataBlock

 UINT16 dataBlockMode

 UINT16 * buffer

 UINT16 bufferSize

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

dataBlock Unique ID of DataBlock 0 - (MAX_DATABLOCKS- 1)

dataBlockMode
DataBlockMode_64_WORDS

buffer A pointer to an array of data words to be copied into the new data block, or NULL if

isn't required

bufferSize The buffersize (unsigned int 16)

Description

Mode: Ready

Create a DataBlock with unique ID. The DataBlockMode specified will set the type.

Currently, the MCX API support a single data block mode of 64 words for all message types. The

DataBlockMode_64_WORDS(0x0010) can be found in the API’s header file.

The ID must be within the allowed range (0 – sitalMaximum_DataBlock -1). If it is not a valid DataBlock ID, an

error is returned:

Note: In case that this ID already exists, an error is returned. In order re-create a DataBlock with existing ID,

the user must delete the DataBlock using ‘mcx_Delete_Element_DataBlock’ fisrt.
Mode: Runtime

While in runtime mode, this function creates only new DataBlock with new IDs. In case that the specified ID is

mapped and running an error is returned

Limitations

The User must allocate a Buffer Size of 64 words in order to match the supported DataBlockMode.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 35

5.10 mcx_Map_DataBlock_To_Element

 INT16
mcx_Map_DataBlock_To_Element (

 UINT16 deviceId

 UINT16 element

 UINT16 dataBlock

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

element Unique ID of Element 0 - (MAX_ELEMENTS - 1)

dataBlock Unique ID of DataBlock 0 - (MAX_DATABLOCKS - 1)

Description

Mode: Ready

This functions maps a DataBlock by its unique ID to an Element by its unique ID.

In case that DataBlock or Element are null, does not exist or not created, error code will be returned.

Note: Datablock can be mapped once to an Element. In case that the user is mapping a Datablock (by unique

ID) that is already mapped to this Element, an error is returne.

Mode: Runtime

This function cannot run while the specified DataBlock OR Element are in use by the HW.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 36

5.11 mcx_Map_Element_To_BusList

 INT16
mcx_Map_Element_To_BusList (

 UINT16 deviceId

 UINT16 busList

 UINT16 element

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

busList Unique ID of BusList 0 - (MAX_BUSLISTS - 1)

element Unique ID of Element 0 - (MAX_ELEMENTS - 1)

Description

Mode: Ready

This functions maps a Element by its unique ID to a BusList by its unique ID.

In case that BusList or Element are null, does not exist or not created, error code will be returned.

Note: Element can be mapped once to a BusList. In case that the user is mapping an Element (by unique ID)

that is already mapped to this BusList, an error is returned.

Mode: Runtime

This function cannot run while the specified BusList OR Element are in use by the HW.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 37

5.12 mcx_Start

 INT16 mcx_Start (

 UINT16 deviceId

 UINT16 busList

 UINT16 numberOfIterations

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

busList Unique ID of BusList 0 - (MAX_BUSLISTS - 1)

numberOfIterations Number of iterations/cycles for the bus list.

0 signals the device to run forever.

Description

Mode: Ready

This function sets the specified device to start handling messages.

Setting the device to numberOfIterations will apply #N cycles for the specified BusList. In case of setting this

parameter to 0, the bus list will iterate for ever (until stopped via mcx_Stop(..)).

The states of the device, bus, bus’s Elements and datablock are set to Running on success.

This function assumes that device was initialized by ‘mcx_Initialize’.
In Case that specified device was not initialized as described, an error code will be returned.

In case that the HW state is not set to Running the following error is returned: STL_ERR_START_RUN_FAILED

Mode: Runtime

This function cannot run while the specified Device is in use by the HW (device is not in Ready Mode). In such a

case, an error is returned: STL_ERR_INVALID_STATE

NOTE – Buslist in this function settings runs on frame GAP mode. For using RATE mode, use

‘mcx_Start_RateMode(..)’ function.
For elaborated info about the difference between Gap and Rate modes, see section 3.1 of this document.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 38

5.13 mcx_Start_RateMode

 INT16 mcx_Start_RateMode (

 UINT16 deviceId

 UINT16 busList

 UINT16 numberOfIterations

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

busList Unique ID of BusList 0 - (MAX_BUSLISTS - 1)

numberOfIterations Number of iterations/cycles for the bus list.

0 signals the device to run forever.

Description

Mode: Ready

This function sets the specified device to start handling messages.

Setting the device to numberOfIterations will apply #N cycles for the specified BusList. In case of setting this

parameter to 0, the bus list will iterate for ever (until stopped via mcx_Stop(..)).

The states of the device, bus, bus’s Elements and datablock are set to Running on success.
This function assumes that device was initialized by ‘mcx_Initialize’.
In Case that specified device was not initialized as described, an error code will be returned.

In case that the HW state is not set to Running the following error is returned: STL_ERR_START_RUN_FAILED

Mode: Runtime

This function cannot run while the specified Device is in use by the HW (device is not in Ready Mode). In such a

case, an error is returned: STL_ERR_INVALID_STATE

NOTE – Buslist in this function settings runs on frame Rate mode. For using GAP mode, use ‘mcx_Start (..)’
function.

For elaborated info about the difference between Gap and Rate modes, see section 3.1 of this document.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 39

5.14 mcx_Stop

 INT16 mcx_Stop (

 UINT16 deviceId

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

Description

Mode: Ready

This function cannot run while the specified Device is in Ready mode. In such a case, an error is returned:

STL_ERR_INVALID_STATE

Mode: Runtime

This function sets the specified device to stop running.

On success, the states of the device, bus, bus’s Elements and DataBlock are set to Ready.

In case that the HW fails to stop, a stop retry occurs after 1 mS. If this retry fails an error returns:

STL_ERR_STOP_RUN_FAILED.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 40

5.15 mcx_Stop2

 INT16 mcx_Stop2 (

 UINT16 deviceId

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

Description

Mode: Ready

This function cannot run while the specified Device is in Ready mode. In such a case, an error is returned:

STL_ERR_INVALID_STATE

Mode: Runtime

This function sets the specified device to stop running.

On success, the states of the device, bus, bus’s Elements and DataBlock are set to Ready.
In case that the HW fails to stop, a stop retry occurs after 1 mS. If this retry fails an error returns:

STL_ERR_STOP_RUN_FAILED.

In this function, no hardware reset applied, should work on MultiRT in 100% bus utilization.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 41

5.16 mcx_Get_Element_Results

INT16 mcx_Get_Element_Results (

 UINT16 deviceId

 UINT16 busList

 UINT16 elementIndex

 UINT16 * blockStatusWord

 WORD * buffer

 UINT16 bufferSize

 UINT16 * status1

 UINT16 * status2

 UINT16 * tag

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

busList Unique ID of BusList 0 - (MAX_BUSLISTS - 1)

elementIndex Element’s Index (not Element ID) within the busList

blockStatusWord Returns Element/Message findings; see Message State table below.

buffer Returns the buffer according to requested size of data transmitted.

bufferSize Buffer size for the retuned buffer.

status1 The first status that was received from a real non-simulated RT

status2 Only in RT2RT command format, the second status (Rx Status) that was received

from a real non-simulated RT

tag
This parameter works in either one of two modes of operations: the message Rate

mode, or the message Gap mode.

In Gap mode - The 16 LSBs of the 32 bit time tag counter are stored here when the

message was launched by the core.

In Rate mode – A frame counter is incremented by 1 at EOF. This frame counter

value is stored in this entry when the message is transmitted

Description

Mode: Ready

This function gets the results of a transmission of a specific Element within a specified BusList. Message results

comprise the message words that were actually transmitted along the internal bus together with the statistics

(diagnostics) of the transmitted message. The diagnostics include an indicator of whether the message

transmission was successful, status words, the data payload that was actually transmitted on the bus.

The difference between this function and the Word Monitor family of functions is that the Word Monitor sits

on the bus in the Tester device and simply records all the words that go by; the Word Monitor has no concept

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 42

of BusLists or Elements. This function, on the other hand, returns a specific Element’s results from the

specified BusList.

Notes

This function requires an Element’s index parameter rather than its ID since the same Elements may

appear more than once within a single frame.

Message State Table

 Name Bit Description

0 Time Tag Word 16 LSBs.

(Gap mode)

15..0 16 LSBs of the real time counter. Written by core when the message started.

0 Frame Number

(Rate mode)

15..0 Frame number when this message was transmitted. Frame number is

incremented every EOF.

It is recommended to init this value to 0xFFFF before run.

1 Message findings 15 End Of Message – Set to ‘1’ by the core when the message has been
complete.

 14 Start Of Message - Set to ‘1’ by the core when the message has been started.
In most cases, this bit is stuck at ‘1’ after end of message if there is a 1553
bus-coupling problem.

 13 ‘0’ – Was sent on Bus A.

‘1’ – Was sent on Bus B.

 12 ‘1’ – Error was found in the message.

Bits 10, 9, 8, 3, 2, 1, 0 indicate cause of error.

 11 Status Set. One of the status bits (excluding BCST bit) of the status return

was ‘1’. Masking ignored.
BCST bit works in either mask mode or compare mode.

In mask mode it works like other mask bits on the BCST bit.

In compare mode, Status set occurs if BCST bit is different from bit 5 of BC

control word.

 10 Format Error. The returned echo from the RT contained 1553 violations. See

bits 3, 2, 1, 0 for a more accurate guess of the source of the problem.

 9 Response timeout. The RT responded too late or didn’t respond at all.
In PP194 – The RIU did not respond properly.

 8 Loop back failed. The nature of 1553 bus is that every word transmitted, is

also echoed back. The core verifies that the echo is correct and equal to the

transmitted word. If not, this bit is set to ‘1’. Also set in messages with error
injected.

Tip: The source of this type of error could be transceiver fault, or bus

coupling problem.

In PP194 –Loop back Failed.

 7 Unmasked Status bit set. This bit will be set to ‘1’ if one of the status bits are
set high and its appropriate mask bit in the BC control word is unmasked

(‘0’). BCST bit influences only in mask mode. See registers section for
description of BCST bit.

 6..5 Number of retries done for this message. “11” is 3, “10” is 2…

 4 Good data block received by TestersChoice, waiting in Data Block.

‘1’ – after an RT-BC, RT2RT, and Transmit Mode code with data commands if

the message ended OK.

‘0’ – after other message types, or if the above type of message was invalid.

‘0’ – for received words that did not match the expected values if “Write
Verify” mode is enabled for the message.
Loop back test failure does not cripple this bit result.

In PP194 – Both phases completed successfully and a real RIU sent its status

and saved to memory.

 3 ‘1’ indicates the RT responded with wrong RT address.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 43

In PP194 – RIU status respond with wrong RIU address.

 2 ‘1’ indicates that the RT transmitted a wrong number of words.

In PP194 – RIU Data phase error.

 1 ‘1’ – Incorrect sync type response by RT.

In PP194 – RIU Status phase error.

 0 ‘1’ – Invalid word. Indicates that the RT responded with a word containing

1553 errors.

In PP194 – The RIU responded with Manchester / parity error.

2 Received 1
st

 status 15..0 First status received from un-simulated RT.

In PP194 – Status bits of status word.

3 Received 2
nd

 status 15..0 Second status received from un-simulated RT.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 44

5.17 mcx_Get_Element_Results_PP194

INT16
mcx_Get_Element_Results_PP194 (

 UINT16 deviceId

 UINT16 busList

 UINT16 elementIndex

 UINT16 * blockStatusWord

 UINT16 * buffer

 UINT16 bufferSize

 UINT16 * status1

 UINT16 * status2

 UINT16 * tag

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

busList Unique ID of BusList 0 - (MAX_BUSLISTS - 1)

elementIndex Element’s Index (not Element ID) within the busList

blockStatusWord Returns Element/Message findings; see Message State table below.

buffer Returns the buffer according to requested size of data transmitted.

bufferSize Buffer size for the retuned buffer.

status1 The first status that was received from a real non-simulated RT

status2 Only in RT2RT command format, the second status (Rx Status) that was received

from a real non-simulated RT

tag
This parameter works in either one of two modes of operations: the message Rate

mode, or the message Gap mode.

In Gap mode - The 16 LSBs of the 32 bit time tag counter are stored here when the

message was launched by the core.

In Rate mode – A frame counter is incremented by 1 at EOF. This frame counter

value is stored in this entry when the message is transmitted

Description

Remarks

This function deferes from mcx_Get_Element_Results(..) by the type of the buffer (UINT16*) retruned.

Both functions (mcx_Get_Element_Results(..) and mcx_Get_Element_Results_PP194(..)) can be used to

retrieve PP194 element results.

Mode: Ready

This function gets the results of a transmission of a specific Element within a specified BusList. Message results

comprise the message words that were actually transmitted along the internal bus together with the statistics

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 45

(diagnostics) of the transmitted message. The diagnostics include an indicator of whether the message

transmission was successful, status words, the data payload that was actually transmitted on the bus.

The difference between this function and the Word Monitor family of functions is that the Word Monitor sits

on the bus in the Tester device and simply records all the words that go by; the Word Monitor has no concept

of BusLists or Elements. This function, on the other hand, returns a specific Element’s results from the
specified BusList.

Notes

This function requires an Element’s index parameter rather than its ID since the same Elements may

appear more than once within a single frame.

Message State Table

 Name Bit Description

0 Time Tag Word 16 LSBs.

(Gap mode)

15..0 16 LSBs of the real time counter. Written by core when the message started.

0 Frame Number

(Rate mode)

15..0 Frame number when this message was transmitted. Frame number is

incremented every EOF.

It is recommended to init this value to 0xFFFF before run.

1 Message findings 15 End Of Message – Set to ‘1’ by the core when the message has been
complete.

 14 Start Of Message - Set to ‘1’ by the core when the message has been started.
In most cases, this bit is stuck at ‘1’ after end of message if there is a 1553

bus-coupling problem.

 13 ‘0’ – Was sent on Bus A.

‘1’ – Was sent on Bus B.

 12 ‘1’ – Error was found in the message.

Bits 10, 9, 8, 3, 2, 1, 0 indicate cause of error.

 11 Status Set. One of the status bits (excluding BCST bit) of the status return

was ‘1’. Masking ignored.
BCST bit works in either mask mode or compare mode.

In mask mode it works like other mask bits on the BCST bit.

In compare mode, Status set occurs if BCST bit is different from bit 5 of BC

control word.

 10 Format Error. The returned echo from the RT contained 1553 violations. See

bits 3, 2, 1, 0 for a more accurate guess of the source of the problem.

 9 Response timeout. The RT responded too late or didn’t respond at all.
In PP194 – The RIU did not respond properly.

 8 Loop back failed. The nature of 1553 bus is that every word transmitted, is

also echoed back. The core verifies that the echo is correct and equal to the

transmitted word. If not, this bit is set to ‘1’. Also set in messages with error
injected.

Tip: The source of this type of error could be transceiver fault, or bus

coupling problem.

In PP194 –Loop back Failed.

 7 Unmasked Status bit set. This bit will be set to ‘1’ if one of the status bits are
set high and its appropriate mask bit in the BC control word is unmasked

(‘0’). BCST bit influences only in mask mode. See registers section for
description of BCST bit.

 6..5 Number of retries done for this message. “11” is 3, “10” is 2…

 4 Good data block received by TestersChoice, waiting in Data Block.

‘1’ – after an RT-BC, RT2RT, and Transmit Mode code with data commands if

the message ended OK.

‘0’ – after other message types, or if the above type of message was invalid.

‘0’ – for received words that did not match the expected values if “Write
Verify” mode is enabled for the message.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 46

Loop back test failure does not cripple this bit result.

In PP194 – Both phases completed successfully and a real RIU sent its status

and saved to memory.

 3 ‘1’ indicates the RT responded with wrong RT address.
In PP194 – RIU status respond with wrong RIU address.

 2 ‘1’ indicates that the RT transmitted a wrong number of words.
In PP194 – RIU Data phase error.

 1 ‘1’ – Incorrect sync type response by RT.

In PP194 – RIU Status phase error.

 0 ‘1’ – Invalid word. Indicates that the RT responded with a word containing

1553 errors.

In PP194 – The RIU responded with Manchester / parity error.

2 Received 1
st

 status 15..0 First status received from un-simulated RT.

In PP194 – Status bits of status word.

3 Received 2
nd

 status 15..0 Second status received from un-simulated RT.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 47

5.18 mcx_Element_DataBlock_Write

 INT16
mcx_Element_DataBlock_Write (

 UINT16 deviceId

 UINT16 element

 UINT16 dataBlock

 UINT16 * buffer

 UINT16 bufferSize

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

element Unique ID of Element 0 - (MAX_ELEMENTS - 1)

dataBlock Unique ID of DataBlock 0 - (MAX_DATABLOCKS - 1)

buffer A pointer to an array of data words to be copied into the new data block, or NULL if

isn't required

bufferSize The size (in words) of the data buffer to write

Description

Mode: Ready

This function writes the buffer of the DataBlock (by its unique ID) by the buffer size.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 48

5.19 mcx_Element_DataBlock_Read

INT16
mcx_Element_DataBlock_Read (

 UINT16 deviceId

 UINT16 element

 UINT16 dataBlock

 UINT16 * buffer

 UINT16 bufferSize

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

element Unique ID of Element 0 - (MAX_ELEMENTS - 1)

dataBlockId Unique ID of DataBlock 0 - (MAX_DATABLOCKS - 1)

buffer A pointer to an array of data words to be copied into the new data block, or NULL if

isn't required

bufferSize The size (in words) of the data buffer to read.

Description

Mode: Ready & Runtime

In both ready and run-time modes, this function’s call access the HW and reads the data to return in buffer

and buffer size.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 49

5.20 mcx_DevicePassiveTimeStarted

 INT16 mcx_DevicePassiveTimeStarted (

 UINT16 deviceId

 UINT16 * isFirstPassive

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

isFirstPassive A pointer to the state of passive phase: 0 == not passive, 1 == is first passive.

Description

Mode: Ready

In this mode, when calling this function before running (mcx_Start(..)) will always return passive time 1.

After running and stop, the function will behave as in runtime mode.

Mode: Runtime

This function checks the state of the currently running BusList.

For each BusList running, the first occurrence of passive phase (first query after active phase) returned 1.

Quesries sent within the same running frame in the passive phase return 0.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 50

5.21 mcx_GetDescriptors

 INT16 mcx_GetDescriptors (

 UINT16 deviceId

 char * deviceName

 char * deviceManufacturer

 char * deviceFirmware

 char * deviceSerial

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

deviceName A pointer to the specified device’s name.

deviceManufacturer A pointer to the specified device’s manufacturer.

deviceFirmware A pointer to the specified device’s firmware.

deviceSerial A pointer to the specified device’s serial number.

Description

Mode: Ready

This function returns in the pointers the relevant device’s following details; name, manufacturer, firmware and

serial number.

Mode: Runtime

Same as Ready Mode.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 51

5.22 mcx_Set_Error

 INT16 mcx_Set_Error (

 UINT16 deviceId

 UINT16 errorType

 UINT16 messageNumber

 UINT16 wordNumber

 UINT16 injectionParameters

 INT16 zXDistortion

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

errorType
Error type corresponding to the following constants (defined in Header file):
mcx_NO_ERROR 0x0000

mcx_PARITY_ERROR 0x1000

mcx_BIPHASE_ERROR 0x3000

mcx_SYNC_ERROR 0x4000

mcx_ZERO_CROSSING_ERROR 0x8000

mcx_NOISE_ERROR 0xF000

messageNumber Message number to insert the error to. Valid values: 0 – 3.

wordNumber Word number to insert the error to. Valid values: 0 – 35.

Word number to insert the error. 0 to 35.

The word number type depends on the Message Type:

For example:

Rx Message type is structured: Command, Data0, Data1…Data N, Status.
Word 0 = Command

Word 1 = Data0

Word..N (up to 35) = Status

Example 2:

RT 2 RT type structured: Rx Command, Tx Command, Tx Status, Data0…DataN, Rx Status.

Word 0 = Rx Command

Word 1 = Tx Command

Word 2 = Tx Status

Word 3 = Data0

Word N = Rx Status

PP194 word numbering:

0 for WORD1

1 for WORD2

2 for Rx bus A RIU response for WORD2 emulation

3 for Rx bus B RIU response for WORD2 emulation

4 for WORD3

5 for WORD4

6 for Rx bus A RIU STATUS response emulation

7 for Rx bus B RIU STATUS response emulation

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 52

injectionParameters Injection parameters corresponds to the specified Error Type:

Parity Error :

This field is ignored.

Word Length:

0x0 – Decrease 2 bits from specified word.

0x1 – Decrease 1 bit from specified word.

0x2 – Increase 1 bit to specified word.

0x3 – Increase 2 bit to specified word.

0x4 – Increase 3 bit to specified word.

Bi Phase:

0x0 for bit 0

0x1 for bit 1

:

0xF for bit 15

0x10 for parity bit.

In case Auto increment is selected, go from parity of Word N to first bit of Word N+1.

0 to 25 for PP194

Sync:

0x0 - 111100,

0x1 - 110000,

0x2 - 111001,

0x3 - 011000,

0x4 - 000011,

0x5 - 001111,

0x6 - 000110,

0x7 - 100111,

0xF - Inverted of what is expected. 000111 111000

For PP194 works as 0xF only.

Zero Crossing:

0 for 1
st
 half of bit 0

1 for 2
nd

 half of for bit 0

2 for 1
st
 half of bit 1

3 for 2
nd

 half of for bit 1

:

38 for 1
st
 half of bit 19 (parity bit)

39 for 2
nd

 half of for bit 19

Zero Xing is inserted in one of the ½ bits of each word. This change would either

expedite the arrival of the next zero Xing, or skew it away by the amount defined in bits

7..4 below. Note that Zero Xing in some of the bits might skew the zero Xing of the next

bit. This will always happen during the sync in bit 0 and 2, and in 2
nd

 half of bits that are

followed by an opposite bit value.

0 to 51 for PP194

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 53

zXDistortion Zero Crossing distortion parameter applied only when selecting Zero Crossing

ErrorType

Zero Xing:

Signed field in the Range of -8 to +7.

-8 : skew next Xing by 8 * 1000/30 nano seconds = +266 ns.

-7 : skew next Xing by 7 * 1000/30 nano seconds = +233 ns.

-6 : skew next Xing by 6 * 1000/30 nano seconds = +200 ns.

:

6 : expedite next Xing by 6 * 1000/30 nano seconds = -200 ns.

7 : expedite next Xing by 7 * 1000/30 nano seconds = -233 ns.

Description

Mode: Ready

This function inject error according to selected error type. Once set, the error would be injected in the BusList

following the earliest Start command.

setup defines the following parameters:

1. The message number in the BusList that should have the error.

2. The word number inside the Element to insert the fault.

3. The bit number in the word to inject the fault (where relevant).

4. Additional parameters per fault.

The errors supported are:

1. Parity error – the Parity bit is inverted.

2. Bi-Phase error –The second half of the bit is identical to the first half.

3. Sync Error – Various bit patterns for the 6 half microseconds are supported.

* For PP194 – applies for inverted pattern only.

4. Zero crossing distortion – Distortion of the zero crossing compared with the previous zero crossing.

5. Noise ** FOR EBR1553 messages only** – inserted to word 0. Injecting noise/distortion to the bus and

creating signal permutation, imitating non-standard bus signal.

Mode: Runtime

Same as in Ready Mode with a single difference – when error is injected while running, it is injected with 0

delay (in oppose to ealiest start).

Limitations

The setup limitations are:

1. A single error per ‘start’ command.
2. No HW checking if the fault location in the message is within the Element length.

3. The error is injected to each and every occurance of that Element after started.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 54

5.23 mcx_Reload

 INT16 mcx_Reload (

 UINT16 deviceId

 UINT16 protocol

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

protocol
User Code option for setting the device to work in a protocol/state.

The following definitions can be found in McxAPI.h:

// UserCode Options

Protocol_1553_PP194

Protocol_H009

MultiRT

Description

Mode: Ready

This function dismisses the currently used FPGA HW file and re-loads an FPGA to the MCX Tester device.

After successful re-load, it initializes device to a protocol and state according to initialization protocol

parameter.

Loading FPGA operation may last up to 8-10 seconds.

Mode: Runtime

Since this is a “configurations and settings” function, it stops the device activities and data transfer.
Note – this function does not wait till the end of message / frame, it is executed with no delay.

Note

Loading FPGA file applies to MultiComBox devices. For Grip2 and PMC (PCI) tester types, the hardware file is

burned into the device.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 55

5.24 mcx_SetFrameTime

 INT16 mcx_SetFrameTime (

 UINT16 deviceId

 UINT32 microSeconds

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

microSeconds Frame time in micro seconds.

Description

Mode: Ready

This function sets the BusList time in resotuion of 100 microseconds.

Note – the acceptable values are 0 to 100*64K microseconds.

Mode: Runtime

N/A

Note

If the frame length is shorter than the active part of the BusList (when it is transmitting the Elements), then the

tester will run back to back at 100% bus utilization.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 56

5.25 mcx_MapDevices

 INT16 mcx_MapDevices (

 UINT16* numberOfDevices

)

Parameters

numberOfDevices A pointer in which the number of available / connected devices is returned

Description

Mode: Ready

This function sense all connected devices and returns an accumulated number that contains all types of

connected devices.

For example, if a Grip2 (a single device) and a MultiComBox (inherentaly contains 2 devices) are both

connected to a machine, this function will return numberOfDevices = 3.

Mode: Runtime

N/A

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 57

5.26 mcx_Free

 INT16 mcx_Free (

 UINT16 deviceId

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

Description

Mode: Ready

This function releases all internal relations between mapped BusLists, Elements, DataBlocks and Devices.

Mode: Runtime

This function stops the run and releases all internal relations between mapped BusLists, Elements, DataBlocks

and Devices.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 58

5.27 mcx_FreeBusList

 INT16 mcx_FreeBusList (

 UINT16 deviceId

 UINT16 busList

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

busList Unique ID of BusList 0 - (MAX_BUSLISTS - 1)

Description

Mode: Ready

This function releases all internal relations between BusList, Elements, DataBlocks.

Mode: Runtime

This function stops the run and releases all internal relations between BusList, Elements, DataBlocks.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 59

5.28 mcx_SetUserPort

 INT16 mcx_SetUserPort (

 UINT16 deviceId

 UINT16 userPort

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

userPort
User port to apply for this device.

The following definitions can be found in McxAPI.h:

// User Port Options

Protocol_1553_PP194

Protocol_H009

MultiRT

Description

Mode: Ready

User Port is one of the Testers’ configuration register which controls various device activities.

This function provides a subset of this config adjustment in the area of changing a specific device’s protocol
between 1553 and PP194 to H009. It also provides the capability to define a device to be a BC + MultiRTs +

Monitor or as MultiRTs + Monitor ony.

Mode: Runtime

N/A – applies to Ready mode only.

Note

Setting the user port overwrites the existing data in the user port.

The best practice of this function is calling mcx_GetUserPort(..) and modify the relevant data only.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 60

5.29 mcx_GetUserPort

 INT16 mcx_GetUserPort (

 UINT16 deviceId

 UINT16* userPort

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

userPort
The User port that this device is set to.

The following definitions can be found in McxAPI.h:

// User Port Options

Protocol_1553_PP194

Protocol_H009

MultiRT

Description

Mode: Ready

This function gets the protocol of the device.

Mode: Runtime

N/A – applies to Ready mode only.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 61

5.30 mcx_GetCurrentFrameNumber

 INT16 mcx_GetCurrentFrameNumber (

 UINT16 deviceId

 UINT16* currFrameNumber

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

currFrameNumber Returns the frame number

Description

Mode: Ready and Runtime

This function reads the current BusList number from the hardware.

Bset practice for this function –

- When running #N times – read the current BusList number before the run and after it is completed to

verify that the number of sent BusLists is identical to the requested number.

- When running forever and stopping the run – read the current BusList number before the run and

after stop to verify the number of BusLists sent till run stopped.

Note

The frame counter is 16 bits long, and it cycles back from 64K-1 to 0, continuing thereafter.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 62

5.31 mcx_Element_SetGap

 INT16 mcx_Element_SetGap (

 UINT16 deviceId

 UINT16 elementId

 UINT16 gap

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

elementId Element ID (message ID) to set a gap to.

gap Gap value for the Element.

Description

Mode: Ready

This function sets the gap value to an Element.

The gap is detailed in microseconds and is the time from the beginning of the current Element to the beginning

of the next Element.

In case the gap is shorter than the current Element, the next element is transmitted back to back.

Note, the Element must be created in order to apply a value to it.

Mode: Running

N/A – not applied for Running mode.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 63

5.32 mcx_Element_SetRate

 INT16 mcx_Element_SetRate (

 UINT16 deviceId

 UINT16 elementId

 UINT16 rate

 UINT16 skew

 UINT16 elementSpacing

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

elementId Element ID (message ID) to set a gap to.

rate Rate value for the Element, value are 0 – 15:

Case N (decimal value) is

0: Skip this message.

1: transmit this message every frame.

2..14: transmit this message every 2^(N-1) frames.

Will be transmitted in frames who’s frame N-1 (unless skewed).

15: Transmit this message once. The HW core resets this value to 0 after

message has been transmitted once.

skew Skew value (0 – 15):

Frame skew: Defines a number M between 0 and 15. Will skew the message M

frames away from its rate planned location (defined above).

elementSpacing Spacing time: Number of microseconds between end of message and start of

next message. Could be left zero.

Description

Mode: Ready

This function sets the rate value to an Element to appear within a Buslist.

The rate is ‘rate’ parameter with values of 0 – 15, see above.

Mode: Running

N/A – not applied for Running mode.

NOTE – in order to use Rate mode, use ‘mcx_Start_RateMode (..)’ function instead of ‘mcx_Start (..)’.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 64

5.33 mcx_Grip2_GetTemperature

 INT16 mcx_Grip2_GetTemperature (

 UINT16 deviceId

 UINT16* temperature

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

temperature Returned temperature

Description

Mode: Ready + Running

This function gets Grip2 device’s temperature (Celsius).

Note

Applies only to Grip2 devices.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 65

5.34 mcx_GetTemperature

 INT16 mcx_GetTemperature (

 UINT16 deviceId

 UINT16* temperature

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

temperature Returned temperature

Description

Mode: Ready + Running

This function gets Grip2 and/or MCX C device’s temperature (Celsius).

Note

Applies only to Grip2 and MCX C (Release in Feb 2020) devices.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 66

5.35 mcx_Get_Version

 INT16 mcx_Get_Version (

 UINT16 deviceId

 UINT16* version

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

version A pointer that returns the firmware version

Description

Mode: Ready & Runtime

This function returns the firmware version of the current device (MultiComBox, Grip2, cPCI card).

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 67

5.36 mcx_wm_GetNextSymbol

 INT16 mcx_wm_GetNextSymbol (

 UINT16 deviceId

 UINT32* swPointer

 WORD* descriptor

 WORD* data

 WORD* bufferSize

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

swPointer Last software pointer

descriptor descriptor

data data

bufferSize returned buffer size

Description

Mode: Ready + Running

This function gets data and descriptor pair from the Monitor’s stack.
The pair contains raw data (time tags, data, command, status, etc). its decoding is done by message decoders;

mcx_wm_GetNextMsg_1553_194(..) and mcx_wm_GetNextMsg_H009(..).

Note

swPointer is managed by the API function and must be tampered by the user.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 68

5.37 mcx_wm_GetNextMsg_1553_194

 INT16 mcx_wm_GetNextMsg_1553_194 (

 UINT16 deviceId

 INT16* msgType

 UINT32* swPointer

 WORD* rxCommand

 WORD* txCommand

 WORD* data

 WORD* bufferSize

 WORD* rxStatus

 WORD* txStatus

 UINT32* BSW

 unsigned long* tTag

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

msgType
Specified the type.

The following definitions can be found in McxAPI.h:
UnParsed

BC2RT

RT2BC

RT2RT

BC2BCST

RT2BCST

BCST2RT_Invalid

BCST2BC_Invalid

BC2RT_Mode_No_Data

BC2RT_Mode_With_Data

RT2BC_Mode_No_Data

RT2BC_Mode_With_Data

RT2RT_Mode_No_Data

RT2RT_Mode_With_Data

BC2BCST_Mode_No_Data

BC2BCST_Mode_With_Data

RT2BCST_Mode_No_Data

RT2BCST_Mode_With_Data

BCST2RT_Mode_No_Data

BCST2BC_Mode_No_Data

swPointer Last software pointer

rxCommand Receive Command

txCommand Transmit Command

data Data buffer of the read message

bufferSize Data buffer size

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 69

rxStatus Receive Status

txStatus Transmit Status

BSW
Block Status Word, Or-ed combination.

The following definitions can be found in McxAPI.h:
mcx_wm_WRONG_CMD_SYNC

mcx_wm_INVALID_WORD

mcx_wm_NO_RESPONSE

mcx_wm_LOW_WORD_COUNT_ERROR

mcx_wm_HIGH_WORD_COUNT_ERROR

mcx_wm_BUS_SWITCHED_ERROR

mcx_wm_LOST_SYNC_ON_BAD_TIME_SYMBOL

mcx_wm_DATA_OVERRUN

mcx_wm_BUS_A

mcx_wm_BUS_B

mcx_wm_PP194

tTag Time tag in 0.5 microseconds resolution

Description

Mode: Ready + Running

This function decodes a 1553 or PP194 (WB194) Element from the Monitor’s stack.
The parameters returned from this function contains decoded data, updated pointers and filtered out time

symbols.

Next Message Data’s Validity

Please note that this function is called and returns Message Type UnParsed (msgType==0).

No new messages have been found or are being processed, hence, all returned data should be ignored.

Note

swPointer is managed by the API function and must be tampered by the user.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 70

5.38 mcx_wm_GetNextMsg_H009

 INT16 mcx_wm_GetNextMsg_H009 (

 UINT16 deviceId

 UINT32* swPointer

 WORD* command

 WORD* isCommandValid

 WORD* data

 WORD* bufferSize

 UINT32* BSW

 unsigned long* tTag

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

swPointer Last software pointer

command H009 Command

isCommandValid A flag indicating if the command is valid (1) or not (0)

data Data buffer

bufferSize Data buffer size

BSW
Block Status Word, Or-ed combination.

The following definitions can be found in McxAPI.h:
mcx_wm_WRONG_CMD_SYNC

mcx_wm_INVALID_WORD

mcx_wm_NO_RESPONSE

mcx_wm_LOW_WORD_COUNT_ERROR

mcx_wm_HIGH_WORD_COUNT_ERROR

mcx_wm_BUS_SWITCHED_ERROR

mcx_wm_LOST_SYNC_ON_BAD_TIME_SYMBOL

mcx_wm_DATA_OVERRUN

mcx_wm_BUS_A

mcx_wm_BUS_B

mcx_wm_PP194

tTag Time tag in 0.5 microseconds resolution

Description

Mode: Ready + Running

This function decodes a H009 Element from the Monitor’s stack.
The parameters returned from this function contains decoded data, updated pointers and filtered out time

symbols.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 71

Note

swPointer is managed by the API function and must be tampered by the user.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 72

5.39 mcx_Restart

 INT16 mcx_Restart (

 UINT16 deviceId

 UINT16 busList

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

busList Unique ID of BusList 0 - (MAX_BUSLISTS - 1)

Description

Mode: Ready + Running

This function allows the user to re-run a running bus list whose data was updated.

Using this function saves the user from the need to wait for the run finish + mcx_Stop + mcx-Start.

User’s data is updated to the bus once it is called and the messages are transmitted.

Notes & Limitations

- mcx_Restart function does not run if the mcx_Start is running forever and will return an error in such

a case.

- mcx_Restart is intended for re-running an mcx_Start once (one shot frames)

- For RT2MCX messages' data, one has to read the data (mcx_Get_Element_Results) before calling

mcx_Restart if needed.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 73

5.40 mcx_BusList_UpdateData

 INT16 mcx_BusList_UpdateData (

 UINT16 deviceId

 UINT16 busList

 INT32* updatedFrame

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

busList Unique ID of BusList 0 - (MAX_BUSLISTS - 1)

updatedFrame A pointer that returns the BusList’s number that was updated by this function

Description

Mode: Running

This function allows the user to update a running bus list’s data during run.

Using this function saves the user from the need to wait for the run finish + mcx_Stop + mcx-Start.

User’s data is updated to the bus once a passive phase (no data is being transmitted). If a passive phase is not

detected for 5 retries a ‘no passive phase detected’ error returns.
Passive phase can be missing if the bus utilization is very high. On average, the passive part should be longer

than 1 ms, and for MultiRT mode, it should be greater than 2 ms for the function to detect the passive phase.

Mode: Ready

This function updates the data to be transmitted.

Notes & Limitations

- This function is intended for re-running an mcx_Start multiple shots, data update occurs during the

run.

- The buslist for this functionmust be mapped to a device and contin the relevant messages and data.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 74

5.41 mcx_GetMonitorErrorsDescription

 INT16 mcx_GetMonitorErrorsDescription (

 UINT32 bsw

 Char* errorDescription

)

Parameters

bsw Block Status Word as received in Word Monitor functions

mcx_wm_GetNextMsg_1553_194(..) or mcx_wm_GetNextMsg_H009(..)

errorCodeDescription Returned description

Description

Mode: Ready + Running

This function gets a string by a BSW (Block Status Word) value as received in Word Monitor functions

mcx_wm_GetNextMsg_1553_194(..) or mcx_wm_GetNextMsg_H009(..)

Notes

Note I - In case that the Block Status Word contains few error messages the returned ‘errorDescription’ string
contains a concatenated strings with ‘&’ separators.
For example; “Wrong command sync & No reponse & “.
Note II – The Monitor error codes can be found in header file McxAPI.h under // WORD MONITOR Returned
codes

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 75

5.42 mcx_GetReturnCodeDescription

 INT16 mcx_GetReturnCodeDescription (

 INT16 errorCode

 Char* errorCodeDescription

)

Parameters

errorCode Error code to get its description

errorCodeDescription Returned description

Description

Mode: Ready + Running

This function gets a string by an error code value.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 76

5.43 mcx_GetSimulatorErrorsDescription

 INT16 mcx_GetSimulatorErrorsDescription (

 UINT32 bsw

 Char* errorDescription

 UINT16 protocol

)

Parameters

bsw
Block Status Word as received in mcx_Get_Element_Results(..)

errorCodeDescription Returned description

protocol protocol: 0==1553 | 1==PP194 | 2==H009

Description

Mode: Ready + Running

This function gets a string by a BSW (Block Status Word) value as received in mcx_Get_Element_Results(..).

Notes

Note I - In case that the Block Status Word contains few error messages the returned ‘errorDescription’ string
contains a concatenated strings with ‘&’ separators.
For example; “Wrong command sync & No reponse & “.
Note II – The simulator error codes can be found in header file McxAPI.h under // SIMULATOR ELEMENT |
MESSAGE FINDINGS
Note III – currently, this function supports protocol Mil-Std-1553 only.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 77

5.44 mcx_SetConfigurationRegisters

 INT16 mcx_SetConfigurationRegisters (

 UINT16 deviceId

 UINT16 configRegisters

 UINT16 configRegisters2

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

configRegisters Configuration Register Address 0x004A, see description below

configRegisters2 Configuration Register Address 0x004B, see description below

Description

Mode: Ready

This function sets configuration registers (addresses 0x4A & 0x4B) with selected values, see elaboration below.

In order to support Bus swap on fail and retries, use this function to set retry on and specify the bus swap

configuration as well.

In addition, on creating a bus list, specify in message options bit 8 high.

The following code example demonstrates PP194 message creation with retry enabled and on first retry swap

bus (marked in YELLOW):

static UINT16 BusList1 = 0;
static UINT16 Element1 = 0;
static UINT16 DB1 = 0;
static UINT16 datablock32[64];
short iResult = 0;
unsigned short elementCommand = 0x0c43;
unsigned short numberOfIterations = 1;
unsigned short messageOptions = 0x0104;
UINT16 simulatedStatus = 0x1234;
unsigned short wDataWord0 = 0x2345;
unsigned short wDataWord1 = 0x00ff;

iResult += mcx_Initialize(0, Protocol_1553_PP194);
// Enabling all RIUs
//iResult += mcx_EnableRius(0, 0xffff);
iResult = mcx_SetConfigurationRegisters(deviceID, 0xC, 0);
iResult += mcx_Create_BusList(BusList1);
iResult += mcx_Create_BusList_Element (Element1, elementCommand, 0x80 /*Bus A*/ |
messageOptions, 0 , simStatus, 0);
iResult += mcx_Create_Element_DataBlock (DB1, DataBlockMode_64_WORDS, dataBlock,
DataBlockS);
dataBlock[0] = data0;
dataBlock[1] = data1;
iResult += mcx_Map_DataBlock_To_Element (Element1, DB1);
iResult += mcx_Map_Element_To_BusList (BusList1, Element1);
iResult += mcx_Start (mrtDeviceID, BusList1, numberOfIterations);
Sleep(100);

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 78

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 79

5.45 mcx_GetConfigurationRegisters

 INT16 mcx_GetConfigurationRegisters (

 UINT16 deviceId

 UINT16 * configRegisters

 UINT16 * configRegisters2

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

configRegisters A pointer to returned Configuration Register Address 0x004A, see description

below

configRegisters2 A pointer to returned Configuration Register Address 0x004B, see description

below

Description

Mode: Ready

This function gets configuration registers values (addresses 0x4A & 0x4B), see elaboration below.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 80

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 81

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 82

5.46 mcx_GetTime

 INT16 mcx_GetTime (

 UINT16 deviceId

 Unsinged long long * time

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

time A pointer to returned device time tag

Description

Mode: Ready & Running

This function returns the card’s time tag. The time tag resolution is 0.5 microseconds.

Notes

Note I – if time tag reads zero as time tag an error is returned.

Note II – a time tag is shared to all devices within a card: 2 devices of MultiComBox, single device of a Grip2, 1-

8 devices of PMC card.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 83

5.47 mcx_SetTime

 INT16 mcx_GetTime (

 UINT16 deviceId

 Unsinged long long time

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

time A value to apply the device’s internal time tag

Description

Mode: Ready & Running

This function sets the card’s time tag. The time tag resolution is 0.5 microseconds.

Notes

Note – a time tag is shared to all devices within a card: 2 devices of MultiComBox, single device of a Grip2, 1-8

devices of PMC card.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 84

5.48 mcx_ RS485_Setup

 INT16 mcx_ RS485_Setup (

 UINT16 moduleId

 UINT16 line

 UINT16 bitsCount

 UINT16 parity

 UINT16 stopBits

 UINT16 rateDivider

 UINT16 rxTxMode

 Uint16 * offset

)

Parameters

moduleId Module ID in initialized device. MultiComBox device contains 2 modules, each

module contains 2 RS485 lines.

line RS485 line in selected module. There are 2 lines for each Module.

bitsCount Number of bits per word, range is 5-9.

parity Type of parity: None = 0; Even = 1; Odd = 2.

stopBits Number of Stop Bits: (number of stop bits) 1 = 0; (number of stop bits) 1.5 = 1;

(number of stop bits) 2 = 2.

rateDivider RS485-line's frequency divider register. the internal UART frequency is 90 MHz.

The RS485 baud rate is: 90,000,000 / uiRateDivider.

rxTxMode RS485 Rx / Tx mode: Tx only = 0; RxTx = 1.

offset Pointer to a variable to receive the offset within the data receive buffer to start

reading data words.

This is the offset portion of the related RS485-line-in's status register (i.e., the

portion that contains the RS485-line RX buffer offset – in units of words) where

the next received RS485 word will be stored.

Description

Mode: Ready + Running

This function configures the bit, rate, and other characteristics of the module’s RS485 line.

Notes

The device must be initialized before using this function.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 85

5.49 mcx_RS485_Put

 INT16 mcx_RS485_Put (

 UINT16 moduleId

 UINT16 line

 UINT16 length

 WORD * buffer

)

Parameters

moduleId Module ID in initialized device. MultiComBox device contains 2 modules, each

module contains 2 RS485 lines.

line RS485 line in selected module. There are 2 lines for each Module.

length
Number of data words to send. Range: 1 – 1008 (SIZE_OF_RS485_TX_BUFFER)

buffer Pointer to a buffer containing the words to send.

The buffer must be large enough to contain ‘length’ words.

Description

Mode: Ready + Running

This function sends data words directly out over the module’s specified RS485 line.

Notes

The mcx_RS485_Setup(..) function must be called prior to using this function.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 86

5.50 mcx_RS485_Get

 INT16 mcx_RS485_Get (

 UINT16 moduleId

 UINT16 line

 UINT16 * offset

 UINT16 length

 WORD * buffer

)

Parameters

moduleId Module ID in initialized device. MultiComBox device contains 2 modules, each

module contains 2 RS485 lines.

line RS485 line in selected module. There are 2 lines for each Module.

offset Pointer to the variable that contains the offset (in units of words) where the

reading operation should start within the specified RS485 line's RX buffer.

Range:

0 <= offset < 1024 (SIZE_OF_RS485_RX_BUFFER)

The offset is then automatically incremented.

length
Number of data words to send. Range: 1 – 1024 (SIZE_OF_RS485_RX_BUFFER)

buffer Pointer to a buffer containing the words to recieve.

The buffer must be large enough to contain ‘length’ words.

Description

Mode: Ready + Running

This function reads the specified number of data words from words that the module has most recently

received into its RX buffer from the specified RS485 line.

Notes

The mcx_RS485_Setup(..) function must be called prior to using this function.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 87

5.51 mcx_RS485_GetNumberOfReceivedWords

 INT16
mcx_RS485_GetNumberOfReceivedWords (

 UINT16 moduleId

 UINT16 line

 UINT16 offset

 UINT16 * length

)

Parameters

moduleId Module ID in initialized device. MultiComBox device contains 2 modules, each

module contains 2 RS485 lines.

line RS485 line in selected module. There are 2 lines for each Module.

offset Offset (in units of words) where the reading operation should start within the

RS485 line's RX buffer.

Range: 0 <= offset < 1024 (SIZE_OF_RS485_RX_BUFFER)

length
Pointer to a variable for receiving the word count of the words received in the

module's RX buffer.

Description

Mode: Ready + Running

This function gets the count of the number of data words that the module has newly received into its RX buffer

from the RS485 line. The data words have not yet been read by the application.

Notes

The mcx_RS485_Setup(..) function must be called prior to using this function.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 88

5.52 mcx_RS485_GetStatus

 INT16 mcx_RS485_GetStatus (

 UINT16 moduleId

 UINT16 * Line0

 UINT16 * Line1

)

Parameters

moduleId Module ID in initialized device. MultiComBox device contains 2 modules, each

module contains 2 RS485 lines.

Line0 A pointer which returns the Line0 status – 0 ok, 1 data corrupted

Line1 A pointer which returns the Line1 status – 0 ok, 1 data corrupted

Description

Mode: Ready + Running

This function gets the activity state for both lines of a Module: once a corruption of data occurs (2 units are

transmitting at once and the data is overlapping) the relevant Line returns with 1.

0 value indicated a good data integrity.

Notes

The mcx_RS485_Setup(..) function must be called prior to using this function.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 89

5.53 mcx_A429_Channel_GetCount

 INT16 mcx_A429_Channel_GetCount (

 UINT32* numOfChannels

)

Parameters

numOfChannels Returns the number of exiting ARINC429 channels on the card

Description

Mode: Ready + Running

This function returns the number of detected Arinc429 channel on the card

Notes

Currently, Arinc429 capabilities applies only to PMC (PCI) cards.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 90

5.54 mcx_A429_Channel_GetInformation

 INT16 mcx_A429_Channel_GetInformation (

 UINT16 channel

 mcx_A429ChannelInfo* channelInfo

)

Parameters

channel Arinc429 channel number

mcx_A429ChannelInfo* A pointer to channel information

Description

Mode: Ready

This function returns information on the specified channel.

Channel info struct specification can be found in Appendix B of this document as well as in McxAPI.h file

Notes

Currently, Arinc429 capabilities applies only to PMC (PCI) cards.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 91

5.55 mcx_A429_Channel_Open

 INT16 mcx_A429_Channel_Open (

 UINT16 channel

 mcx_A429ChannelInfo* channelInfo

)

Parameters

channel Arinc429 channel number

mcx_A429ChannelInfo* A pointer to channel information

Description

Mode: Ready

This function opens the specified channel and returns updated information on the specified channel.

This function must be used for each channel before communicating with the it in order to prepare it for Tx Rx

operations (bring the channel out of reset state).

Channel info struct specification can be found in Appendix B of this document as well as in McxAPI.h file.

Notes

Currently, Arinc429 capabilities applies only to PMC (PCI) cards.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 92

5.56 mcx_A429_Channel_Close

 INT16 mcx_A429_Channel_Close (

 UINT16 channel

)

Parameters

channel Arinc429 channel number

Description

Mode: Ready

This function closes the specified channel.

Once a channel is closed it cannot perform Arinc429 operations until mcx_A429_Channel_Open (..) it invoked.

Notes

Currently, Arinc429 capabilities applies only to PMC (PCI) cards.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 93

5.57 mcx_A429_Channel_SetConfigRegister

 INT16 mcx_A429_Channel_SetConfigRegister (

 UINT16 channel

 UINT32 chanFlags

)

Parameters

channel Arinc429 channel number

chanFlags Channel flags by the Tx and Rx vectors specified below

Description

Mode: Ready

This function sets the configuration for the specified channel.

The channel flags are described below and can be used with the following constants, also defined in McxAPI.h

file.

// Following bits are same for TX and RX modes:
#define MCX_A429_CFG_HIGH_RATE 0x0001 ///< Data rate: 100 KHz
#define MCX_A429_CFG_LOW_RATE 0x0000 ///< Data rate: 12.5 KHz
#define MCX_A429_CFG_MASK_RATE 0x0001
#define MCX_A429_CFG_PARITY_NONE 0x0000 ///< Data parity: none. MSB can be
used as data.
#define MCX_A429_CFG_PARITY_EVEN 0x0002 ///< Data parity: even
#define MCX_A429_CFG_PARITY_ODD 0x0006 ///< Data parity: odd
#define MCX_A429_CFG_MASK_PARITY 0x0006 // Mask for parity bits

#define MCX_A429_NUMBER_OF_WORDS_MASK 0x00FF0000 // Number of words in FIFO mask
- Bits 16-23
#define MCX_A429_FIFO_FULL 0x01000000 // FIFO full
#define MCX_A429_FIFO_EMPTY 0x02000000 // FIFO empty
#define MCX_A429_RX_LABEL_TABLE_READY 0x04000000 // Labels table ready

// Following bits apply only for RX mode:
#define MCX_A429_CFG_RX_LABEL_MATCH 0x0008 ///< enable label matching
#define MCX_A429_CFG_MASK_RX_LABELS 0x0008
#define MCX_A429_CFG_RX_DECODER_ENABLE 0x0010
#define MCX_A429_CFG_RX_DECODER_DISABLE 0x0000
#define MCX_A429_CFG_MASK_RX_DECODER 0x0070

Tx Configuration

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 94

Rx Configuration

Notes

Currently, Arinc429 capabilities applies only to PMC (PCI) cards.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 95

5.58 mcx_A429_Channel_GetConfigRegister

 INT16 mcx_A429_Channel_GetConfigRegister (

 UINT16 channel

 UINT32* chanFlags

)

Parameters

channel Arinc429 channel number

chanFlags Pointer to channel flags by the Tx and Rx vectors specified below

Description

Mode: Ready

This function gets the configuration for the specified channel.

The channel flags are described below and can be used with the following constants, also defined in McxAPI.h

file.

// Following bits are same for TX and RX modes:
#define MCX_A429_CFG_HIGH_RATE 0x0001 ///< Data rate: 100 KHz
#define MCX_A429_CFG_LOW_RATE 0x0000 ///< Data rate: 12.5 KHz
#define MCX_A429_CFG_MASK_RATE 0x0001
#define MCX_A429_CFG_PARITY_NONE 0x0000 ///< Data parity: none. MSB can be
used as data.
#define MCX_A429_CFG_PARITY_EVEN 0x0002 ///< Data parity: even
#define MCX_A429_CFG_PARITY_ODD 0x0006 ///< Data parity: odd
#define MCX_A429_CFG_MASK_PARITY 0x0006 // Mask for parity bits

#define MCX_A429_NUMBER_OF_WORDS_MASK 0x00FF0000 // Number of words in FIFO mask
- Bits 16-23
#define MCX_A429_FIFO_FULL 0x01000000 // FIFO full
#define MCX_A429_FIFO_EMPTY 0x02000000 // FIFO empty
#define MCX_A429_RX_LABEL_TABLE_READY 0x04000000 // Labels table ready

// Following bits apply only for RX mode:
#define MCX_A429_CFG_RX_LABEL_MATCH 0x0008 ///< enable label matching
#define MCX_A429_CFG_MASK_RX_LABELS 0x0008
#define MCX_A429_CFG_RX_DECODER_ENABLE 0x0010
#define MCX_A429_CFG_RX_DECODER_DISABLE 0x0000
#define MCX_A429_CFG_MASK_RX_DECODER 0x0070

Tx Configuration

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 96

Rx Configuration

Notes

Currently, Arinc429 capabilities applies only to PMC (PCI) cards.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 97

5.59 mcx_A429_Channel_GetStatusRegister

 INT16 mcx_A429_Channel_GetStatusRegister (

 UINT16 channel

 UINT32* chanStats

)

Parameters

channel Arinc429 channel number

chanFlags Pointer to channel status registers by the Tx and Rx vectors specified

below

Description

Mode: Ready+ Runtime

This function gets the status registers for the specified channel. It can be used to determined the FIFO state

and number of received words in case of Rx bus.

The channel flags are described below and can be used with the following constants, also defined in McxAPI.h

file.

// Following bits are same for TX and RX modes:
#define MCX_A429_CFG_HIGH_RATE 0x0001 ///< Data rate: 100 KHz
#define MCX_A429_CFG_LOW_RATE 0x0000 ///< Data rate: 12.5 KHz
#define MCX_A429_CFG_MASK_RATE 0x0001
#define MCX_A429_CFG_PARITY_NONE 0x0000 ///< Data parity: none. MSB can be
used as data.
#define MCX_A429_CFG_PARITY_EVEN 0x0002 ///< Data parity: even
#define MCX_A429_CFG_PARITY_ODD 0x0006 ///< Data parity: odd
#define MCX_A429_CFG_MASK_PARITY 0x0006 // Mask for parity bits

#define MCX_A429_NUMBER_OF_WORDS_MASK 0x00FF0000 // Number of words in FIFO mask
- Bits 16-23
#define MCX_A429_FIFO_FULL 0x01000000 // FIFO full
#define MCX_A429_FIFO_EMPTY 0x02000000 // FIFO empty
#define MCX_A429_RX_LABEL_TABLE_READY 0x04000000 // Labels table ready

// Following bits apply only for RX mode:
#define MCX_A429_CFG_RX_LABEL_MATCH 0x0008 ///< enable label matching
#define MCX_A429_CFG_MASK_RX_LABELS 0x0008
#define MCX_A429_CFG_RX_DECODER_ENABLE 0x0010
#define MCX_A429_CFG_RX_DECODER_DISABLE 0x0000
#define MCX_A429_CFG_MASK_RX_DECODER 0x0070

Tx Configuration

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 98

Rx Configuration

Notes

Currently, Arinc429 capabilities applies only to PMC (PCI) cards.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 99

5.60 mcx_A429_Channel_ Receive

 INT16 mcx_A429_Channel_ Receive (

 UINT16 channel

 UINT32 bufferSize

 UINT32* buffer

 UINT32* numberOfReceivedWords

)

Parameters

channel Arinc429 channel number

bufferSize Size of assigned buffer

buffer A pointer to the buffer in which the data returned

numberOfReceivedWords Number of words actually received on the bus

Description

Mode: Ready + Runtime

This function gets the data received and number of words received on the bus, it is returned in a buffer.

This function can be coupled with mcx_A429_GetRxWordsPending(..) to check if data is received and waiting in

the FIFO

Notes

Currently, Arinc429 capabilities applies only to PMC (PCI) cards.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 100

5.61 mcx_A429_Channel_ Send

 INT16 mcx_A429_Channel_ Send (

 UINT16 channel

 UINT32 bufferSize

 UINT32* buffer

 UINT32* numberOfWrittenWords

)

Parameters

channel Arinc429 channel number

bufferSize Size of assigned buffer

buffer A pointer to the data buffer to send

numberOfWrittenWords Number of words actually sent on the bus

Description

Mode: Ready + Runtime

This function transmits data buffer on the bus and returns the number of words sent.

Notes

Currently, Arinc429 capabilities applies only to PMC (PCI) cards.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 101

5.62 mcx_A429_GetRxWordsPending

 INT16 mcx_A429_GetRxWordsPending (

 UINT16 channel

 UINT32* numberOfWords

)

Parameters

channel Arinc429 channel number

numberOfWords Number of pending words in the Rx FIFO

Description

Mode: Ready + Runtime

This function gets the number of words pending on the Rx bus.

Notes

Currently, Arinc429 capabilities applies only to PMC (PCI) cards.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 102

5.63 mcx_A429_Card_SetConfiguration

 INT16 mcx_A429_Card_Configuration (

 UINT32 cardFlags

)

Parameters

cardFlags
A vector signaling the card on the setup. The following constants can be found in

McxAPI.h file:

MCX_A429_CARD_DISABLE_INTERNAL_LOOPBACK 0x00000000
MCX_A429_CARD_ENABLE_INTERNAL_LOOPBACK 0x00000001

Description

Mode: Ready

This function sets internal loopback on and off on the card for all Arinc429 Tx and Rx data buses.

Once the card is set to perform internal loopback, external Tx Rx are disabled and vice versa.

The initial state of the card is internal loopback is disable (accepting external Tx and Rx data).

The internal loopback loops channel 0 to channel 2 and channel 1 to channel 3.

Notes

Currently, Arinc429 capabilities applies only to PMC (PCI) cards.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 103

5.64 mcx_GetPciProductIds

 INT16 mcx_GetPciProductIds (

 S32BIT* pIds

 S16BIT* numberOfCardsFound

)

Parameters

pIds Pointer to the beginning of an array of Product IDs found for PCI cards.

numberOfCardsFound Returns the number of cards found

Description

Mode: Ready+ Running

This function returns array of Product IDs of all PCI cards identified on the PCI slots and the number of found

cards.

For example, if a PCI card of 1553 + RS485 (identifies as 2 cards on the PCI since it contains 2 IP cores) and in

addition Arinc429 card with 8Tx channels and 16Rx channels, the pIds will return 3 product ids (2002, 2002 and

429) and the numberOfCards will return 3.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 104

5.65 mcx_A429_Pci_Channel_GetCount

 INT16 mcx_A429_Pci_Channel_GetCount (

 U16BIT card

 UINT32* numOfChannels

)

Parameters

card Card number to get the number of channels it contains

numOfChannels Returns the number of exiting ARINC429 channels on the card

Description

Mode: Ready + Running

This function returns the number of detected Arinc429 channel on the card specified

Notes

Currently, Arinc429 capabilities applies only to PCI cards.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 105

5.66 mcx_A429_Pci_Channel_GetInformation

 INT16 mcx_A429_Pci_Channel_GetInformation (

 U16BIT card

 U16BIT channel

 mcx_A429ChannelInfo* channelInfo

)

Parameters

card Card number

channel Arinc429 channel number

mcx_A429ChannelInfo* A pointer to channel information

Description

Mode: Ready

This function returns information on the specified channel within a specified card.

Channel info struct specification can be found in Appendix B of this document as well as in McxAPI.h file

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 106

5.67 mcx_A429_Pci_Channel_Open

 INT16 mcx_A429_Pci_Channel_Open (

 U16BIT card

 U16BIT channel

 mcx_A429ChannelInfo* channelInfo

)

Parameters

channel Arinc429 channel number

mcx_A429ChannelInfo* A pointer to channel information

Description

Mode: Ready

This function opens the specified channel and returns updated information on the specified channel within the

specified card.

This function must be used for each channel before communicating with the it in order to prepare it for Tx Rx

operations (bring the channel out of reset state).

Channel info struct specification can be found in Appendix B of this document as well as in McxAPI.h file.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 107

5.68 mcx_A429_Pci_Channel_Close

 INT16 mcx_A429_Pci_Channel_Close (

 U16BIT Card

 U16BIT channel

)

Parameters

card Card number

channel Arinc429 channel number

Description

Mode: Ready

This function closes the specified channel within specified card.

Once a channel is closed it cannot perform Arinc429 operations until mcx_A429_Channel_Open (..) it invoked.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 108

5.69 mcx_A429_Pci_Channel_SetConfigRegister

 INT16
mcx_A429_Pci_Channel_SetConfigRegister (

 U16BIT Card

 U16BIT channel

 U32BIT chanFlags

)

Parameters

card Card number

channel Arinc429 channel number

chanFlags Channel flags by the Tx and Rx vectors specified below

Description

Mode: Ready

This function sets the configuration for the specified channel within specified card.

The channel flags are described below and can be used with the following constants, also defined in McxAPI.h

file.

// Following bits are same for TX and RX modes:
#define MCX_A429_CFG_HIGH_RATE 0x0001 ///< Data rate: 100 KHz
#define MCX_A429_CFG_LOW_RATE 0x0000 ///< Data rate: 12.5 KHz
#define MCX_A429_CFG_MASK_RATE 0x0001
#define MCX_A429_CFG_PARITY_NONE 0x0000 ///< Data parity: none. MSB can be
used as data.
#define MCX_A429_CFG_PARITY_EVEN 0x0002 ///< Data parity: even
#define MCX_A429_CFG_PARITY_ODD 0x0006 ///< Data parity: odd
#define MCX_A429_CFG_MASK_PARITY 0x0006 // Mask for parity bits

#define MCX_A429_NUMBER_OF_WORDS_MASK 0x00FF0000 // Number of words in FIFO mask
- Bits 16-23
#define MCX_A429_FIFO_FULL 0x01000000 // FIFO full
#define MCX_A429_FIFO_EMPTY 0x02000000 // FIFO empty
#define MCX_A429_RX_LABEL_TABLE_READY 0x04000000 // Labels table ready

// Following bits apply only for RX mode:
#define MCX_A429_CFG_RX_LABEL_MATCH 0x0008 ///< enable label matching
#define MCX_A429_CFG_MASK_RX_LABELS 0x0008
#define MCX_A429_CFG_RX_DECODER_ENABLE 0x0010
#define MCX_A429_CFG_RX_DECODER_DISABLE 0x0000
#define MCX_A429_CFG_MASK_RX_DECODER 0x0070

Tx Configuration

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 109

Rx Configuration

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 110

5.70 mcx_A429_Pci_Channel_GetConfigRegister

 INT16
mcx_A429_Pci_Channel_GetConfigRegister (

 U16BIT Card

 U16BIT channel

 U32BIT* chanFlags

)

Parameters

card Card number

channel Arinc429 channel number

chanFlags Pointer to channel flags by the Tx and Rx vectors specified below

Description

Mode: Ready

This function gets the configuration for the specified channel within specified card.

The channel flags are described below and can be used with the following constants, also defined in McxAPI.h

file.

// Following bits are same for TX and RX modes:
#define MCX_A429_CFG_HIGH_RATE 0x0001 ///< Data rate: 100 KHz
#define MCX_A429_CFG_LOW_RATE 0x0000 ///< Data rate: 12.5 KHz
#define MCX_A429_CFG_MASK_RATE 0x0001
#define MCX_A429_CFG_PARITY_NONE 0x0000 ///< Data parity: none. MSB can be
used as data.
#define MCX_A429_CFG_PARITY_EVEN 0x0002 ///< Data parity: even
#define MCX_A429_CFG_PARITY_ODD 0x0006 ///< Data parity: odd
#define MCX_A429_CFG_MASK_PARITY 0x0006 // Mask for parity bits

#define MCX_A429_NUMBER_OF_WORDS_MASK 0x00FF0000 // Number of words in FIFO mask
- Bits 16-23
#define MCX_A429_FIFO_FULL 0x01000000 // FIFO full
#define MCX_A429_FIFO_EMPTY 0x02000000 // FIFO empty
#define MCX_A429_RX_LABEL_TABLE_READY 0x04000000 // Labels table ready

// Following bits apply only for RX mode:
#define MCX_A429_CFG_RX_LABEL_MATCH 0x0008 ///< enable label matching
#define MCX_A429_CFG_MASK_RX_LABELS 0x0008
#define MCX_A429_CFG_RX_DECODER_ENABLE 0x0010
#define MCX_A429_CFG_RX_DECODER_DISABLE 0x0000
#define MCX_A429_CFG_MASK_RX_DECODER 0x0070

Tx Configuration

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 111

Rx Configuration

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 112

5.71 mcx_A429_Pci_Channel_GetStatusRegister

 INT16
mcx_A429_Pci_Channel_GetStatusRegister (

 U16BIT Card

 U16BIT channel

 U32BIT* chanStats

)

Parameters

Card Card number

channel Arinc429 channel number

chanFlags Pointer to channel status registers by the Tx and Rx vectors specified

below

Description

Mode: Ready+ Runtime

This function gets the status registers for the specified channel within specified card. It can be used to

determined the FIFO state and number of received words in case of Rx bus.

The channel flags are described below and can be used with the following constants, also defined in McxAPI.h

file.

// Following bits are same for TX and RX modes:
#define MCX_A429_CFG_HIGH_RATE 0x0001 ///< Data rate: 100 KHz
#define MCX_A429_CFG_LOW_RATE 0x0000 ///< Data rate: 12.5 KHz
#define MCX_A429_CFG_MASK_RATE 0x0001
#define MCX_A429_CFG_PARITY_NONE 0x0000 ///< Data parity: none. MSB can be
used as data.
#define MCX_A429_CFG_PARITY_EVEN 0x0002 ///< Data parity: even
#define MCX_A429_CFG_PARITY_ODD 0x0006 ///< Data parity: odd
#define MCX_A429_CFG_MASK_PARITY 0x0006 // Mask for parity bits

#define MCX_A429_NUMBER_OF_WORDS_MASK 0x00FF0000 // Number of words in FIFO mask
- Bits 16-23
#define MCX_A429_FIFO_FULL 0x01000000 // FIFO full
#define MCX_A429_FIFO_EMPTY 0x02000000 // FIFO empty
#define MCX_A429_RX_LABEL_TABLE_READY 0x04000000 // Labels table ready

// Following bits apply only for RX mode:
#define MCX_A429_CFG_RX_LABEL_MATCH 0x0008 ///< enable label matching
#define MCX_A429_CFG_MASK_RX_LABELS 0x0008
#define MCX_A429_CFG_RX_DECODER_ENABLE 0x0010
#define MCX_A429_CFG_RX_DECODER_DISABLE 0x0000
#define MCX_A429_CFG_MASK_RX_DECODER 0x0070

Tx Configuration

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 113

Rx Configuration

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 114

5.72 mcx_A429_Pci_Channel_ Receive

 INT16 mcx_A429_Pci_Channel_ Receive (

 U16BIT Card

 U16BIT channel

 U32BIT bufferSize

 U32BIT* buffer

 U32BIT* numberOfReceivedWords

)

Parameters

card Card number

channel Arinc429 channel number

bufferSize Size of assigned buffer

buffer A pointer to the buffer in which the data returned

numberOfReceivedWords Number of words actually received on the bus

Description

Mode: Ready + Runtime

This function gets the data received and number of words received on the bus, it is returned in a buffer.

This function can be coupled with mcx_A429_GetRxWordsPending(..) to check if data is received and waiting in

the FIFO

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 115

5.73 mcx_A429_Pci_Channel_ Send

 INT16 mcx_A429_Pci_Channel_ Send (

 U16BIT Card

 U16BIT channel

 U32BIT bufferSize

 U32BIT* buffer

 U32BIT* numberOfWrittenWords

)

Parameters

card Card number

channel Arinc429 channel number

bufferSize Size of assigned buffer

buffer A pointer to the data buffer to send

numberOfWrittenWords Number of words actually sent on the bus

Description

Mode: Ready + Runtime

This function transmits data buffer on the bus and returns the number of words sent.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 116

5.74 mcx_A429_Pci_GetRxWordsPending

 INT16 mcx_A429_Pci_GetRxWordsPending (

 U16BIT Card

 U16BIT channel

 U32BIT* numberOfWords

)

Parameters

card Card number

channel Arinc429 channel number

numberOfWords Number of pending words in the Rx FIFO

Description

Mode: Ready + Runtime

This function gets the number of words pending on the Rx bus.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 117

5.75 mcx_A429_Pci_Card_SetConfiguration

 INT16 mcx_A429_Pci_Card_Configuration (

 U16BIT Card

 UINT32 cardFlags

)

Parameters

card
Card number

cardFlags
A vector signaling the card on the setup. The following constants can be found in

McxAPI.h file:

MCX_A429_CARD_DISABLE_INTERNAL_LOOPBACK 0x00000000
MCX_A429_CARD_ENABLE_INTERNAL_LOOPBACK 0x00000001

Description

Mode: Ready

This function sets internal loopback on and off on the card specified for all Arinc429 Tx and Rx data buses.

Once the card is set to perform internal loopback, external Tx Rx are disabled and vice versa.

The initial state of the card is internal loopback is disable (accepting external Tx and Rx data).

The internal loopback loops channel 0 to channel 2 and channel 1 to channel 3.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 118

5.76 mcx_GetLicenseDescription

 INT16 mcx_GetLicenseDescription (

 UINT16 deviceId

 char* description

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

description A pointer in which the license features returned

Description

Mode: Ready + Runtime

This function gets a string concatenating all available features and their license state. For each feature an

indication of ‘Licensed’ or ‘Unlicensed’ provided. The features are concatenated as a single characters’ string,
separated by ‘ & ’ character. For example: “Licensed - Mil-Std-1553 & Unlicensed - PP194 &
Licensed - H009 & “ etc.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 119

5.77 mcx_SetCyberAttack

 INT16 mcx_SetCyberAttack (

 UINT16 deviceId

 UINT16 cyberAttackType

 UINT16 triggerCommand

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

cyberAttackType Attack types of the following

mcx_No_Attack 0x0000

mcx_Attack_Mode1 0x0001

mcx_Attack_Mode2 0x0002

mcx_Attack_Mode3 0x0003

triggerCommand Triggering command for Attack Mode 3

Description

Mode: Ready + Runtime

This function sets the firmware to No Attack mode or to any of the following modes:

mcx_No_Attack 0x0000 // no Cyber-attack mode
mcx_Attack_Mode1 0x0001 // Time delayed attack mode with 65 ms steps of delay
mcx_Attack_Mode2 0x0002 // Time delayed attack mode with 100 us steps of delay
mcx_Attack_Mode3 0x0003 // Trigger Message delay mode

for elaboration about different mode types, see section 2.2 (Set Cyber Emulation) in this document.

Once setting the attack to an active attack type (other than 0 = No Attack), the firmware automatically acts

upon selected settings; time to first attack (is set by function ‘mcx_SetFrameTime(..)’), messages gaps and

trigger command (attack type 3).

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 120

5.78 mcx_TestExternalLoopback_DevicetoDevice

INT16 mcx_TestExternalLoopback_DevicetoDevice (

 UINT16 device0

 UINT16 Device1

 UINT16 * resultD0A

 UINT16 * resultD0B

 UINT16 * resultD1A

 UINT16 * resultD1B

 Bool* badDataFound

)

Parameters

Device0 Unique Device ID 0 - (sitalMaximum_DEVICES - 1).

Device1 Unique Device ID 0 - (sitalMaximum_DEVICES - 1).

resultD0A A pointer returning the results BC side for device 0, Bus A

resultD0B A pointer returning the results BC side for device 0, Bus B

resultD0A A pointer returning the results BC side for device 1, Bus A

resultD0A A pointer returning the results BC side for device 1, Bus B

badDataFound A pointer returning true if received data is different than transmitted (from RT)

Description

Mode: Ready

This test performs the following test:

- transmit 0xC20 command (RT to BC, 32 words) on bus A from BC device to MultiRT device and then

on bus B

- RT is simulated in MultiRT side, data is incremental from 0x5555

- command is transmitted once

- data is checked in the BC side

- then devices are switched, repeating the test

- this test is a blocking command

- 4 results are returned - device0A, device0B, device1A, device1B

Important Notes

- The code implementation can be found in this document, appendix 7.3.

- Pre-requisit for theis function is that

o 2 devices at least exist on the device

o Both devices are initialized prior to using this function

o Relevant wiring required, see document {TBD}

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 121

5.79 mcx_Send_AsynchMsg1

INT16 mcx_Send_AsynchMsg1 (

 UINT16 deviceId

 UINT16 command

 UINT16 options

 UINT16 statusWord

 UINT16* buffer

 UINT16 bufferSize

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

command Unique, MIL-STD-1553 Command word that this Element services.

Currently supported BC2RT and RT2BC commands (no RT2RT)

options Element’s optional configuration parameter. The option is a logic OR combination of
the following configs:

Bus BusA = 0x80.

BusB =0

Pp194 messagetype For pp194 – 0x0004.

For 1553 - 0

statusWord Status for simulated (Multi) RT / RIU responses.

Buffer A pointer to the beginning of the data buffer for this message

bufferSize Buffer size to apply

Description

Mode: Ready & Runtime

This function create an Async message and sends it. The message can be created and run when bus is idle and

when other frames and messages are running.

Once this message is created it is transmitted instantly, serving as Async (High Prioirty) message.

Additional Async message can be sent using mcx_Send_AsynchMsg2.

For getting the Async message’s results, use mcx_Get_Asynch1_Results(..) function.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 122

5.80 mcx_Send_AsynchMsg2

INT16 mcx_Send_AsynchMsg2 (

 UINT16 deviceId

 UINT16 command

 UINT16 options

 UINT16 statusWord

 UINT16* buffer

 UINT16 bufferSize

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

command Unique, MIL-STD-1553 Command word that this Element services.

Currently supported BC2RT and RT2BC commands (no RT2RT)

options Element’s optional configuration parameter. The option is a logic OR combination of
the following configs:

Bus BusA = 0x80.

BusB =0

Pp194 messagetype For pp194 – 0x0004.

For 1553 - 0

statusWord Status for simulated (Multi) RT / RIU responses.

Buffer A pointer to the beginning of the data buffer for this message

bufferSize Buffer size to apply

Description

Mode: Ready & Runtime

This function create an Async message and sends it. The message can be created and run when bus is idle and

when other frames and messages are running.

Once this message is created it is transmitted instantly, serving as Async (High Prioirty) message.

For getting the Async message’s results, use mcx_Get_Asynch2_Results(..) function.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 123

5.81 mcx_Get_Asynch1_Results

INT16 mcx_Get_Asynch1_Results (

 UINT16 deviceId

 UINT16* blockStatusWord

 WORD* buffer

 UINT16 bufferSize

 UINT16* Status

 UINT16* tag

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

blockStatusWord A pointer that returns the BSW, see elaboration below

buffer A pointer to the returned buffer

bufferSize Size of buffer to return

Status A pointer returning the 1553 Status of the message

Tag The 16 LSBs of the 32 bit time tag counter

Description

Mode: Ready & Runtime

This function gets the results of a transmission of Async message 1. Message results

comprise the message words that were actually transmitted along the internal bus together with the statistics

(diagnostics) of the transmitted message. The diagnostics include an indicator of whether the message

transmission was successful, status words, the data payload that was actually transmitted on the bus.

The difference between this function and the Word Monitor family of functions is that the Word Monitor sits

on the bus in the Tester device and simply records all the words that go by; the Word Monitor has no concept

of BusLists or Elements. This function, on the other hand, returns a specific Element’s results from the
specified BusList.

Message State Table

 Name Bit Description

0 Time Tag Word 16 LSBs.

(Gap mode)

15..0 16 LSBs of the real time counter. Written by core when the message started.

0 Frame Number

(Rate mode)

15..0 Frame number when this message was transmitted. Frame number is

incremented every EOF.

It is recommended to init this value to 0xFFFF before run.

1 Message findings 15 End Of Message – Set to ‘1’ by the core when the message has been
complete.

 14 Start Of Message - Set to ‘1’ by the core when the message has been started.
In most cases, this bit is stuck at ‘1’ after end of message if there is a 1553
bus-coupling problem.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 124

 13 ‘0’ – Was sent on Bus A.

‘1’ – Was sent on Bus B.

 12 ‘1’ – Error was found in the message.

Bits 10, 9, 8, 3, 2, 1, 0 indicate cause of error.

 11 Status Set. One of the status bits (excluding BCST bit) of the status return

was ‘1’. Masking ignored.
BCST bit works in either mask mode or compare mode.

In mask mode it works like other mask bits on the BCST bit.

In compare mode, Status set occurs if BCST bit is different from bit 5 of BC

control word.

 10 Format Error. The returned echo from the RT contained 1553 violations. See

bits 3, 2, 1, 0 for a more accurate guess of the source of the problem.

 9 Response timeout. The RT responded too late or didn’t respond at all.
In PP194 – The RIU did not respond properly.

 8 Loop back failed. The nature of 1553 bus is that every word transmitted, is

also echoed back. The core verifies that the echo is correct and equal to the

transmitted word. If not, this bit is set to ‘1’. Also set in messages with error
injected.

Tip: The source of this type of error could be transceiver fault, or bus

coupling problem.

In PP194 –Loop back Failed.

 7 Unmasked Status bit set. This bit will be set to ‘1’ if one of the status bits are
set high and its appropriate mask bit in the BC control word is unmasked

(‘0’). BCST bit influences only in mask mode. See registers section for
description of BCST bit.

 6..5 Number of retries done for this message. “11” is 3, “10” is 2…

 4 Good data block received by TestersChoice, waiting in Data Block.

‘1’ – after an RT-BC, RT2RT, and Transmit Mode code with data commands if

the message ended OK.

‘0’ – after other message types, or if the above type of message was invalid.

‘0’ – for received words that did not match the expected values if “Write
Verify” mode is enabled for the message.
Loop back test failure does not cripple this bit result.

In PP194 – Both phases completed successfully and a real RIU sent its status

and saved to memory.

 3 ‘1’ indicates the RT responded with wrong RT address.
In PP194 – RIU status respond with wrong RIU address.

 2 ‘1’ indicates that the RT transmitted a wrong number of words.

In PP194 – RIU Data phase error.

 1 ‘1’ – Incorrect sync type response by RT.

In PP194 – RIU Status phase error.

 0 ‘1’ – Invalid word. Indicates that the RT responded with a word containing

1553 errors.

In PP194 – The RIU responded with Manchester / parity error.

2 Received 1
st

 status 15..0 First status received from un-simulated RT.

In PP194 – Status bits of status word.

3 Received 2
nd

 status 15..0 Second status received from un-simulated RT.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 125

5.82 mcx_Get_Asynch2_Results

INT16 mcx_Get_Asynch2_Results (

 UINT16 deviceId

 UINT16* blockStatusWord

 WORD* buffer

 UINT16 bufferSize

 UINT16* Status

 UINT16* tag

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

blockStatusWord A pointer that returns the BSW, see elaboration below

buffer A pointer to the returned buffer

bufferSize Size of buffer to return

Status A pointer returning the 1553 Status of the message

Tag The 16 LSBs of the 32 bit time tag counter

Description

Mode: Ready & Runtime

This function gets the results of a transmission of Async message 2. Message results

comprise the message words that were actually transmitted along the internal bus together with the statistics

(diagnostics) of the transmitted message. The diagnostics include an indicator of whether the message

transmission was successful, status words, the data payload that was actually transmitted on the bus.

The difference between this function and the Word Monitor family of functions is that the Word Monitor sits

on the bus in the Tester device and simply records all the words that go by; the Word Monitor has no concept

of BusLists or Elements. This function, on the other hand, returns a specific Element’s results from the
specified BusList.

Message State Table

 Name Bit Description

0 Time Tag Word 16 LSBs.

(Gap mode)

15..0 16 LSBs of the real time counter. Written by core when the message started.

0 Frame Number

(Rate mode)

15..0 Frame number when this message was transmitted. Frame number is

incremented every EOF.

It is recommended to init this value to 0xFFFF before run.

1 Message findings 15 End Of Message – Set to ‘1’ by the core when the message has been
complete.

 14 Start Of Message - Set to ‘1’ by the core when the message has been started.
In most cases, this bit is stuck at ‘1’ after end of message if there is a 1553
bus-coupling problem.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 126

 13 ‘0’ – Was sent on Bus A.

‘1’ – Was sent on Bus B.

 12 ‘1’ – Error was found in the message.

Bits 10, 9, 8, 3, 2, 1, 0 indicate cause of error.

 11 Status Set. One of the status bits (excluding BCST bit) of the status return

was ‘1’. Masking ignored.
BCST bit works in either mask mode or compare mode.

In mask mode it works like other mask bits on the BCST bit.

In compare mode, Status set occurs if BCST bit is different from bit 5 of BC

control word.

 10 Format Error. The returned echo from the RT contained 1553 violations. See

bits 3, 2, 1, 0 for a more accurate guess of the source of the problem.

 9 Response timeout. The RT responded too late or didn’t respond at all.
In PP194 – The RIU did not respond properly.

 8 Loop back failed. The nature of 1553 bus is that every word transmitted, is

also echoed back. The core verifies that the echo is correct and equal to the

transmitted word. If not, this bit is set to ‘1’. Also set in messages with error
injected.

Tip: The source of this type of error could be transceiver fault, or bus

coupling problem.

In PP194 –Loop back Failed.

 7 Unmasked Status bit set. This bit will be set to ‘1’ if one of the status bits are
set high and its appropriate mask bit in the BC control word is unmasked

(‘0’). BCST bit influences only in mask mode. See registers section for
description of BCST bit.

 6..5 Number of retries done for this message. “11” is 3, “10” is 2…

 4 Good data block received by TestersChoice, waiting in Data Block.

‘1’ – after an RT-BC, RT2RT, and Transmit Mode code with data commands if

the message ended OK.

‘0’ – after other message types, or if the above type of message was invalid.

‘0’ – for received words that did not match the expected values if “Write
Verify” mode is enabled for the message.
Loop back test failure does not cripple this bit result.

In PP194 – Both phases completed successfully and a real RIU sent its status

and saved to memory.

 3 ‘1’ indicates the RT responded with wrong RT address.
In PP194 – RIU status respond with wrong RIU address.

 2 ‘1’ indicates that the RT transmitted a wrong number of words.

In PP194 – RIU Data phase error.

 1 ‘1’ – Incorrect sync type response by RT.

In PP194 – RIU Status phase error.

 0 ‘1’ – Invalid word. Indicates that the RT responded with a word containing

1553 errors.

In PP194 – The RIU responded with Manchester / parity error.

2 Received 1
st

 status 15..0 First status received from un-simulated RT.

In PP194 – Status bits of status word.

3 Received 2
nd

 status 15..0 Second status received from un-simulated RT.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 127

5.83 mcx_Element_UpdateData

 INT16 mcx_Element_UpdateData (

 UINT16 deviceId

 UINT16 busList

 UINT16 element

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

busList Unique ID of BusList 0 - (MAX_BUSLISTS - 1)

updatedFrame The Element’s index within the Buslist to update it’s data

Description

Mode: Running

This function allows the user to update a running bus list element’s data during run.

User’s data is updated to the bus once on this function call, therefore, it is the user’s responsibility to invoke

this function on the relevant timing.

In order to update the Element’s data once a message is transmitted, use function
‘mcx_Get_Buslist_TransmittedElements(..)’ to check if a message was transmitted or not.

Mode: Ready

This function updates the data to be transmitted.

Example
U8BIT transmitted[64];

 U16BIT count = 0;

 while(count < times){

 iResult = mcx_Get_Buslist_TransmittedElements(DeviceId, BusList1, transmitted); if (iResult < 0) return iResult;

 if(transmitted[0]) {

 for (UINT16 i = 0x0000; i < 8; i++) datablock1[i] = payload0++;

 iResult = mcx_Element_UpdateData(DeviceId, BusList1, Element1); if (iResult < 0) return iResult;

 }

 if(transmitted[1]) {

 for (UINT16 i = 0x0000; i < 16; i++) datablock2[i] = payload1++;

 iResult = mcx_Element_UpdateData(DeviceId, BusList1, Element2); if (iResult < 0) return iResult;

 }

 if(transmitted[2]) {

 for (UINT16 i = 0x0000; i < 8; i++) datablock3[i] = payload2++;

 iResult = mcx_Element_UpdateData(DeviceId, BusList1, Element3); if (iResult < 0) return iResult;

 }

 if(transmitted[3]) {

 for (UINT16 i = 0x0000; i < 16; i++) datablock4[i] = payload3++;

 iResult = mcx_Element_UpdateData(DeviceId, BusList1, Element4); if (iResult < 0) return iResult;

 count++;

 }

 }

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 128

5.84 mcx_Get_Buslist_TransmittedElements

 INT16 mcx_Get_Buslist_TransmittedElements (

 UINT16 deviceId

 UINT16 busList

 U8BIT* elementsTransmitted

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

busList Unique ID of BusList 0 - (MAX_BUSLISTS - 1)

elementsTransmitted
A pointer to an array that returns all elements transmitted states:

Not transmitted – ‘0’

Transmitted – ‘1’

Description

Mode: Running

This function returns all the Buslists’ Elements’ states – up to maximum 64 messages allowed in a single

Buslist.

Each of this array index represents it’s complementary Element’s states:
For index 0, the message 0 state is ‘0’ (Not transmitted / Completed) or ‘1’ (Transmitted).
For index 6, the message 6 state is ‘0’ (Not transmitted / Completed) or ‘1’ (Transmitted).
And so on…

Example
U8BIT transmitted[64];

 U16BIT count = 0;

 while(count < times){

 iResult = mcx_Get_Buslist_TransmittedElements(DeviceId, BusList1, transmitted); if (iResult < 0) return iResult;

 if(transmitted[0]) {

 for (UINT16 i = 0x0000; i < 8; i++) datablock1[i] = payload0++;

 iResult = mcx_Element_UpdateData(DeviceId, BusList1, Element1); if (iResult < 0) return iResult;

 }

 if(transmitted[1]) {

 for (UINT16 i = 0x0000; i < 16; i++) datablock2[i] = payload1++;

 iResult = mcx_Element_UpdateData(DeviceId, BusList1, Element2); if (iResult < 0) return iResult;

 }

 if(transmitted[2]) {

 for (UINT16 i = 0x0000; i < 8; i++) datablock3[i] = payload2++;

 iResult = mcx_Element_UpdateData(DeviceId, BusList1, Element3); if (iResult < 0) return iResult;

 }

 if(transmitted[3]) {

 for (UINT16 i = 0x0000; i < 16; i++) datablock4[i] = payload3++;

 iResult = mcx_Element_UpdateData(DeviceId, BusList1, Element4); if (iResult < 0) return iResult;

 count++;

 }

 }

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 129

5.85 mcx_Element_UpdateStatuses

 INT16 mcx_Element_UpdateStatuses (

 UINT16 deviceId

 UINT16 element

 UINT16 rxStatus

 UINT16 txStatus

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

element Unique ID of Element’s ID

rxStatus Rx status to update for this Element

txStatus Tx status to update for this Element

Description

Mode: Ready & Running

This function allows the user to update an Element’s statuses during running frames.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 130

5.86 mcx_SetRTsResponseDelay

 INT16 mcx_SetRTsResponseDelay (

 UINT16 deviceId

 UINT16 rtResponseHalfUs

 UINT16 respondAnyway

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

rtResponseHalfUs Response time value to change the global RTs response time. Values are 6 – 258

in half of micro seconds.

respondAnyway ‘1’ - Force RTs to reply once rtResponseHalfUs value is between 0 – 6 (1/2 micro

seconds)

‘0’ – Do not force RTs to reply.

Description

Mode: Ready & Running

This function sets all RTs response time to the defined value in parameter rtResponseHalfUs.

In order for an RT to spoof another RT, do the following:

1. Find out what is your spoofed RT response time.

2. Find out what is your spoofed RT address.

3. Enable simulation for that RT address.

4. Set the MultiRT response time to either shorter / longer response time than measured RT -

rtResponseHalfUs

5. Add the attacked messages into the MultiRT frame.

6. Run the frame when spoofing is required.

NOTE - If the MultiRT response is shorter than the spoofed RT, some spoofed RTs would back off,

Others would transmit at their response time.

The latter case might error out the spoofed RT response.

In case that the MultiRT's response time is greater than the spoofed RT response time,

the MultiRT's response would probably overlap the spoofed RT.

NOTE II - 200 nano seconds are added to any user's requested MultiRT response time.

NOTE III - in case the MultiRT response is greater than the standard allows (14 us), unexpected behavior might

occur.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 131

5.87 mcx_TransmitSingleMessageOnce

 INT16 mcx_TransmitSingleMessageOnce (

 UINT16 deviceId

 UINT16 command

 Bool emulateRt

 UINT16* buffer

 UINT16 size

 UINT16* BSW

 UINT16* rtStatus

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

command 1553 command.

emulateRt ‘1’ -emulate RT

‘0’ – Do emulate RT

buffer data buffer

size buffer size

BSW Bit status word result

rtStatus RT Status result

Description

Mode: Ready & Running

This function sends one 1553 command once and returns Bit Status word and rtStatus.

It is an immediate one command that includes all functionality.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 132

6 Service Functions

6.1 Mcx_Read

 INT16 mcx_Read (

 UINT16 deviceId

 U16BIT address

 WORD bufferSize

 WORD* buffer

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

address Address of Memory to read data from.

bufferSize Size of buffer to read.

buffer A pointer to the buffer that returns the data read.

Description

Mode: Ready & Runtime

This service function returns (in the Data pointer) the data available according to the specified address.

It is advised to use this function for debug and print-outs purposes.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 133

6.2 Mcx_Write

 INT16 mcx_Write (

 UINT16 deviceId

 U16BIT address

 WORD bufferSize

 WORD* buffer

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

address Address to write data to.

bufferSize Size of buffer to write.

Buffer A pointer to the buffer to write.

Description

Mode: Ready & Runtime

This service function writes the data in buffer to the specified address.

It is advised to use this function for debug and print-outs purposes.

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 134

6.3 mcx_Transmit_1553_Message

 INT16 mcx_Transmit_1553_Message (

 UINT16 deviceId

 UINT16 command

 UINT16* blockStatusWord

 WORD* buffer

 UINT16* actualWordCount

 UINT16* status

 UINT16* tTag

 UINT16* options

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

command Mil-Std-1553 Command to transmit of type BC to RT or RT to BC.

blockStatusWord Unused

Buffer A pointer to the data words buffer to transmit.

Actual WordCount Unused

Status Unused

tTag Unused

options Unused

Description

Mode: Ready

This service function creates and transmits a single Mil-Std-1553 command on Bus A.

The command is of type BC2RT or RT2BC. Frame length is configured to 0.

Note I - A device initialization is required in order to run this function successfully.

Note II – in order to call this function in a loop, the buslist (This function uses buslist == 0 internally) must be

free on each iteration (mcx_Free(..) or mcx_FreeBusList(..)).

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 135

6.4 mcx_Transmit_1553_Messages

 INT16 mcx_Transmit_1553_Messages (

 UINT16 deviceId

 UINT16 command

 UINT16* blockStatusWord

 WORD* buffer

 UINT16 numberOfShots

 UINT16* status

 UINT16* options

)

Parameters

deviceId Unique Device ID 0 - (sitalMaximum_DEVICES - 1)

command Mil-Std-1553 Command to transmit of type BC to RT or RT to BC.

blockStatusWord Unused

Buffer A pointer to the data words buffer to transmit.

numberOfShots Number of cycles to transmit the requested command.

0 means, transmit forever.

Status Unused

options Unused

Description

Mode: Ready

This service function creates and transmits Mil-Std-1553 command on Bus A. The command is transmitted as

specified in numberOfShots parameter, while selecting 0 will tramit the command forever.

The command is of type BC2RT or RT2BC. Frame length is configured to 0.

Note I - A device initialization is required in order to run this function successfully.

Note II – In order to stop the run, use free function (mcx_Free(..)).

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 136

7 Code Samples

7.1 MIL-STD-1553

// Create a single Rx message and run it. Get results.

static UINT16 BusList1 = 0;
static UINT16 Element1 = 0;
static UINT16 DB1 = 0;
static UINT16 datablock32[64];
short iResult = 0;
unsigned short elementCommand = 0x20;
unsigned short numberOfIterations = 3;
unsigned short messageOptions = 0x0000;
iResult += mcx_Initialize(0, Protocol_1553_PP194);
iResult += mcx_EnableRts(0, 0x01);
iResult += mcx_Create_BusList(BusList1);
iResult += mcx_Create_BusList_Element (Element1, elementCommand, 0x80 /*Bus A*/ |
messageOptions, 0, 0, 0);
iResult += mcx_Create_Element_DataBlock (DB1, DataBlockMode_64_WORDS, datablock32,
64);
for (UINT16 i = 0x0000; i < DataBlockS ; i++)
{
 dataBlock[i] = i;
}
iResult += mcx_Map_DataBlock_To_Element (Element1, DB1);
iResult += mcx_Map_Element_To_BusList (BusList1, Element1);
iResult += mcx_Start (mrtDeviceID, BusList1, numberOfIterations);
Sleep(100);

UINT16 blockStatusWord;
WORD buffer[32];
UINT16 bufferSize = 32;
UINT16 status1;
UINT16 status2;
UINT16 tag;
iResult += mcx_Get_Element_Results(0, 0, 0, &blockStatusWord, buffer, bufferSize,
&status1, &status2, &tag);

7.2 H009

// Create a single Rx message and run it, function as Multi RT. Get results.

static UINT16 BusList1 = 0;
static UINT16 Element1 = 0;
static UINT16 DB1 = 0;
static UINT16 datablock32[64];
short iResult = 0;
unsigned short elementCommand = 0x6033;
unsigned short numberOfIterations = 1;
unsigned short messageOptions = 0x0000;
iResult += mcx_Initialize(0, Protocol_H009 | MultiRT);
iResult += mcx_EnableRts(0, 0x40);
iResult += mcx_Create_BusList(BusList1);

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 137

iResult += mcx_Create_BusList_Element (Element1, elementCommand, 0x80 /*Bus A*/ |
messageOptions, 0, 0, 0);
iResult += mcx_Create_Element_DataBlock (DB1, DataBlockMode_64_WORDS, datablock32,
64);
for (UINT16 i = 0x0000; i < DataBlockS ; i++)
{
 dataBlock[i] = i;
}
iResult += mcx_Map_DataBlock_To_Element (Element1, DB1);
iResult += mcx_Map_Element_To_BusList (BusList1, Element1);
iResult += mcx_Start (mrtDeviceID, BusList1, numberOfIterations);
Sleep(100);

UINT16 blockStatusWord;
WORD buffer[32];
UINT16 bufferSize = 32;
UINT16 status1;
UINT16 status2;
UINT16 tag;
iResult += mcx_Get_Element_Results(0, 0, 0, &blockStatusWord, buffer, bufferSize,
&status1, &status2, &tag);

7.3 PP194 (WB194)

static UINT16 BusList1 = 0;
static UINT16 Element1 = 0;
static UINT16 DB1 = 0;
static UINT16 datablock32[64];
short iResult = 0;
unsigned short elementCommand = 0x0c43;
unsigned short numberOfIterations = 1;
unsigned short messageOptions = 0x0004;
UINT16 simulatedStatus = 0x1234;
unsigned short wDataWord0 = 0x2345;
unsigned short wDataWord1 = 0x00ff;

iResult += mcx_Initialize(0, Protocol_1553_PP194);
// Enabling all RIUs
//iResult += mcx_EnableRius(0, 0xffff);
iResult += mcx_Create_BusList(BusList1);
iResult += mcx_Create_BusList_Element (Element1, elementCommand, 0x80 /*Bus A*/ |
messageOptions, 0 , simStatus, 0);
iResult += mcx_Create_Element_DataBlock (DB1, DataBlockMode_64_WORDS, dataBlock,
DataBlockS);
dataBlock[0] = data0;
dataBlock[1] = data1;
iResult += mcx_Map_DataBlock_To_Element (Element1, DB1);
iResult += mcx_Map_Element_To_BusList (BusList1, Element1);
iResult += mcx_Start (mrtDeviceID, BusList1, numberOfIterations);
Sleep(100);

UINT16 blockStatusWord;
WORD buffer[32];
UINT16 bufferSize = 32;
UINT16 status1;
UINT16 status2;
UINT16 tag;

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 138

iResult += mcx_Get_Element_Results(0, 0, 0, &blockStatusWord, buffer, bufferSize,
&status1, &status2, &tag);

7.4 RS485

Conceptual Workflow

- Init MCX device
- Setup a module and RS485 line
- Put (Tx) data
- Verify the number of words received
- Get (Rx) into buffer by the number of words received

/**
The following test assumes
- the tested device is a PCI (not PMC) tester device -> the RS485 devices are devices 4-7
- coupling between devices 4-5 and 6-7
NOTE - 4 == device 4 channel 0, 5 == device 4 channel 1, device 6 == device 5 channel 0, device 7 ==
device 5 channel 1
- input required from user -> device | baud rate | number of iterations
**/
#include "stdafx.h"
#include <stdio.h>
#include <stdlib.h>
#include <winsock2.h>
#include "windows.h"
#include <stdio.h>
#include "CommonTypes.h"
#include "McxAPI.h"
#include "McxAPIReturnCodes.h"

UINT16 DeviceId = 0;
char errorCode[1000];
UINT16 offset = 0;
const UINT16 size = 16;
UINT16 txBuff[1024];
UINT16 rxBuff[1024];
UINT16 rxLength;

char input [256];

UINT16 module;
UINT16 line;

int _tmain(int argc, _TCHAR* argv[])
{
 INT16 iResult = 0;
 UINT16 map = 0;
 iResult = mcx_MapDevices(&map);
 module = 4;
 line = 0;

 printf("Up and running");
 if(iResult < 0)
 {
 printf("\nError reading card %04X, HIT enter to exit", iResult);
 getchar();
 return -5;
 }

 printf("\nDetected %i devices", map);

 for(int i = 0 ; i < map ; i++)
 { iResult = mcx_Initialize(i, MIL_STD_1553);
 if (iResult < 0) {
 mcx_GetReturnCodeDescription(iResult, errorCode);

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 139

 printf("\nError INIT -> %s\nHit Enter to exit", errorCode);
 getchar();
 return -1;
 }
 }
 printf("\nDevices initialized successfully");
 printf("\n\n\n");
 UINT16 dev;
 UINT16 linerTx;
 UINT16 linerRx;
 UINT16 baud;
 UINT16 iterations;
 char *p;
 while(true)
 {
 printf("\nPress ENTER after each enty...:");
 printf("\nDevice ID:\n");
 gets (input);
 dev = atoi(input);
 printf("\nBaud Rate:\n");
 gets (input);
 baud = atoi(input);
 printf("\nIterations:\n");
 gets (input);
 iterations = atoi(input);

 dev = (dev / 2) * 2;
 if((dev % 2) == 0) {
 linerTx = 0;
 linerRx = 1;
 }
 else {
 linerTx = 1;
 linerRx = 0;
 }
 iResult = mcx_RS485_Setup(dev, linerTx, 8 /*bit count*/, 1 /*no parity*/, 0 /*stop
bits single*/, baud /*rate divider...*/, 1/*rxtx mode*/, &offset);
 if (iResult < 0) {
 mcx_GetReturnCodeDescription(iResult, errorCode);
 printf("Error -> %s\n", errorCode);
 getchar();
 return -1;
 }
 iResult = mcx_RS485_Setup(dev, linerRx, 8 /*bit count*/, 1 /*no parity*/, 0 /*stop
bits single*/, baud /*rate divider...*/, 1/*rxtx mode*/, &offset);
 if (iResult < 0) {
 mcx_GetReturnCodeDescription(iResult, errorCode);
 printf("Error -> %s\n", errorCode);
 getchar();
 return -1;
 }

 printf("\nTX device %i", dev);
 if((dev % 2) == 0) printf("\nRX device %i", dev + 1);
 else printf("\nRX device %i", dev - 1);

 for(int i = 0 ; i < size ; i++) txBuff[i] = i + 0xAAAA;
 for(int i = 0 ; i < iterations; i++){
 // Tx a buffer to the bus..
 iResult = mcx_RS485_Put(dev, linerTx, size, txBuff);
 if (iResult < 0) {
 mcx_GetReturnCodeDescription(iResult, errorCode);
 printf("Error -> %s\n", errorCode);
 getchar();
 return -1;
 }
 Sleep(100);

 iResult = mcx_RS485_GetNumberOfReceivedWords(dev, linerRx, offset, &rxLength);
 if (iResult < 0) {

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 140

 mcx_GetReturnCodeDescription(iResult, errorCode);
 printf("Error -> %s\n", errorCode);
 getchar();
 return -1;
 }
 else{
 printf("\nRx %i words", rxLength);
 }

 if(rxLength > 0)
 {
 iResult = mcx_RS485_Get(dev, linerRx, &offset, rxLength, rxBuff);
 if (iResult < 0) {
 mcx_GetReturnCodeDescription(iResult, errorCode);
 printf("Error -> %s\n", errorCode);
 getchar();
 return -1;
 }
 else{
 printf("\n");
 for(int i = 0 ; i < rxLength ; i++)
 {
 if(txBuff[i] != rxBuff[i])
 {
 printf("DATA err %i ", i);
 }
 }
 }
 }
 }
 }
 return 0;
}

7.5 Arinc 429

Conceptual Workflow

- Get number of existing channels on the card
- Open all channels
- Set each channel’s config
- Send data on Tx bus
- Check the number of words pending in the Rx FIFO
- Get (Rx) into buffer by the number of words received

#include "stdafx.h"
#include <stdio.h>
#include <stdlib.h>
#include "windows.h"
#include "McxAPI.h"
#include "McxAPI.h"
#include "McxAPIReturnCodes.h"

static mcx_A429ChannelInfo cInfo[4] = {};

void _tmain(int argc, _TCHAR* argv[])
{
 INT16 result;
 UINT32 nc;

 result = mcx_A429_Channel_GetCount(&nc);
 if(result != 0) printf("\nmcx_A429_Channel_GetCount Failed");

 //result = mcx_A429_Channel_Reset(0, 0);

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 141

 for(int i = 0 ; i < (int)nc ; i++){
 result = mcx_A429_Channel_GetInformation(i, &cInfo[i]);
 if(result != 0) printf("\nmcx_A429_Channel_GetInformation Failed");
 result = mcx_A429_Channel_Open(i, &cInfo[i]);
 if(result != 0) printf("\nmcx_A429_Channel_Open Failed");
 }
 UINT32 cf = (MCX_A429_CFG_HIGH_RATE | MCX_A429_CFG_PARITY_NONE);
 //cf = 0x98761234;
 UINT32 gcf;
 result = mcx_A429_Channel_SetConfigRegister(0, cf);
 if(result != 0) printf("\nmcx_A429_Channel_SetConfigRegister ch0 Failed");
 result = mcx_A429_Channel_GetConfigRegister(0, &gcf);
 if(result != 0) printf("\nmcx_A429_Channel_GetConfigRegister ch0 Failed");
 if(cf != (gcf & 0xFF)) printf("\nFailed to configure ch0");

 result = mcx_A429_Channel_SetConfigRegister(1, cf);
 if(result != 0) printf("\nmcx_A429_Channel_SetConfigRegister ch1 Failed");
 result = mcx_A429_Channel_SetConfigRegister(2, cf);
 if(result != 0) printf("\nmcx_A429_Channel_SetConfigRegister ch2 Failed");
 result = mcx_A429_Channel_SetConfigRegister(3, cf);
 if(result != 0) printf("\nmcx_A429_Channel_SetConfigRegister ch3 Failed");

 UINT32 buff[100];
 UINT32 buff1[100];
 UINT32 buff2[100];
 UINT32 buff3[100];
 UINT32 written, rcv;
 for(UINT32 i = 0; i < 100 ; i++) {
 buff[i] = (0x00000000 | i);
 buff2[i] = i + 50;
 }
 //while(1){
 result = mcx_A429_Send(0, 100, buff, &written);
 //}
 //if(result != 0) printf("\nmcx_A429_Send ch0 Failed");
 result = mcx_A429_Channel_GetConfigRegister(0, &gcf);
 if(result != 0) printf("\nmcx_A429_Channel_GetConfigRegister ch0 Failed");
 Sleep(40);
 result = mcx_A429_Receive(2, 100, buff1, &rcv);
 if(result != 0) printf("\nmcx_A429_Receive ch1 Failed");

 for(int i = 0 ; i < 100 ; i++){
 if(buff[i] != buff1[i]) printf("\nBuffers not the same!");
 }

 written = 0; rcv = 0;

 result = mcx_A429_Send(1, 100, buff2, &written);
 if(result != 0) printf("\nmcx_A429_Send ch1 Failed");
 result = mcx_A429_Channel_GetConfigRegister(1, &gcf);
 if(result != 0) printf("\nmcx_A429_Channel_GetConfigRegister ch1 Failed");
 Sleep(40);
 result = mcx_A429_Receive(3, 100, buff3, &rcv);
 if(result != 0) printf("\nmcx_A429_Receive ch1 Failed");

 for(int i = 0 ; i < 100 ; i++){
 if(buff2[i] != buff3[i]) printf("\nbuff2 != buff3!");
 }

 getchar();
 return;
}

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 142

7.6 MIL-STD-1760
#include "stdafx.h"
#include <stdio.h>
#include <time.h>
#include <stdlib.h>
#include "windows.h"
#include "McxAPI.h"
#include "McxAPIReturnCodes.h"

INT16 iResult = 0;
UINT16 DeviceId = 0;
char errorCode[1000];
/*
1. Power up the MIL-STD-1760 UUT
2. Run full speed contimuous RT1 with Tx 30 words to SA1
Repeat -
3. Record first time of reply
4. Record first time of reply not busy
until
5. Report UUT powerup response time
6. Report UUT not-busy response time
7. Report message transmission resolution
8. Exit
*/

UINT16 blockStatus = 0;
UINT16 buffer[32];
UINT16 aWC = 0;
UINT16 status = 0;
UINT16 tTag = 0;
UINT16 options = 0;
UINT16 numberOfShots = 0;// 0 == run forever
clock_t t1, t2, t3;

int _tmain(int argc, _TCHAR* argv[])
{
 iResult = mcx_Initialize(DeviceId, MIL_STD_1553);
 if (iResult < 0) {
 mcx_GetReturnCodeDescription(iResult, errorCode);
 printf("Error -> %s\n", errorCode);
 printf("Hit Enter to Exit");
 getchar();
 return -1;
 }

 // POWER UP the UUT
 printf("\nPower Up the UUT and hit Enter to Continue\n");
 getchar();
 printf("Waiting for Response..");
 t1 = clock();

 iResult = mcx_FreeBusList(DeviceId, 0);
 if (iResult < 0) {
 mcx_GetReturnCodeDescription(iResult, errorCode);
 printf("Error -> %s\n", errorCode);
 printf("Hit Enter to Exit");
 getchar();
 return -1;
 }
 iResult = mcx_Transmit_1553_Messages(DeviceId, 0x0C02, &blockStatus, buffer, numberOfShots,
&status, &options);
 if (iResult < 0) {
 mcx_GetReturnCodeDescription(iResult, errorCode);
 printf("Error -> %s\n", errorCode);
 printf("Hit Enter to Exit");
 getchar();
 return -1;
 }

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 143

 UINT32 BSW = 0;
 INT16 msgType;
 unsigned long long ttag = 0;
 WORD data[32];
 UINT32 swPointer = 0;
 WORD rxCommand = 0xAAAA;
 WORD txCommand = 0xAAAA;
 WORD rxStat;
 WORD txStat;
 WORD bufferSize = 0;
 bool answered = false;

 while(1){

 iResult = mcx_wm_GetNextMsg_1553_194(0, &msgType, &swPointer, &rxCommand, &txCommand,
data, &bufferSize, &rxStat, &txStat, &BSW, &ttag);
 if (iResult < 0) {
 mcx_GetReturnCodeDescription(iResult, errorCode);
 printf("Error -> %s\n", errorCode);
 printf("Hit Enter to Exit");
 getchar();
 return -1;
 }

 if((BSW & mcx_wm_NO_RESPONSE) == 0 && answered == false && (rxCommand != 0xCCCC ||
txStat != 0xCCCC)) {
 t2 = clock();
 answered = true;
 }
 // bit 3 is busy
 if((answered == true) && ((txStat & 0x8) == 0)){
 t3 = clock();
 break;
 }
 }

 float diff = ((float)(t2 - t1) / 1000000.0F) * 1000;
 printf("\nTime from power up until first respose - %f",diff);

 diff = ((float)(t3 - t2) / 1000000.0F) * 1000;
 printf("\nTime from first respose until not busy - %f",diff);

 printf("\n\nProgram finished, please press Enter");
 getchar();
 mcx_Free(DeviceId);

 return 0;
}

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 144

8 Appendices

8.1 Appendix A – Returned Error Codes

Note I – returned error codes can be found in McxAPIReturnCodes.h

Note II – The function ‘mcx_GetReturnCodeDescription(..)’ can be used in order to retrieve a string

description.

Codes:

#define STL_ERR_SUCCESS (0)

#define STL_ERR_INVALID_DEVICE_NUMBER (-1)

#define STL_ERR_VERSION_ERROR (-2)

#define STL_ERR_DEVICE_NOT_FOUND (-3)

#define STL_ERR_FAILED_TO_OPEN_DEVICE (-4)

#define STL_ERR_FAILED_TO_GET_DESCRIPTORS (-5)

#define STL_ERR_FAILED_TO_CONFIGURE_FPGA (-6)

#define STL_ERR_FAILED_TO_READ_DEVICE_PORT (-7)

#define STL_ERR_FAILED_TO_SET_DEVICE_PORT (-8)

#define STL_ERR_DEVICE_POWER_SUPPLY_ERRPR (-9)

#define STL_ERR_FAILED_TO_START_FPGA_CONFIG (-10)

#define STL_ERR_FAILED_TO_OPEN_FPGA_FILE (-11)

#define STL_ERR_FAILED_TO_WRITE_FPGA_CHUNK (-12)

#define STL_ERR_FAILED_TO_LOAD_FPGA (-13)

#define STL_ERR_NOT_IMPLEMENTED (-14)

#define STL_ERR_DATABLOCK_SIZE_EXCEEDS_LIMIT (-15)

#define STL_ERR_QUSB_WRITE_COMMAND_FAILED (-16)

#define STL_ERR_QUSB_READ_FAILED (-17)

#define STL_ERR_QUSB_WRITE_FAILED (-18)

#define STL_ERR_TOO_MANY_ELEMENTS_FOR_MEM_SPCAE (-19)

#define STL_ERR_NULL_POINTER_PARAMETER (-20)

#define STL_ERR_STRING_TOO_LONG (-21)

#define STL_ERR_INVALID_DIRECTORY_NAME (-22)

#define STL_ERR_FAILED_TO_ALLOCATE_MEMORY (-23)

#define STL_ERR_H009_DEVICE_ID_MUST_BE_EVEN (-24)

#define STL_ERR_PP194_ELEMENT_ON_ODD_DEVICE_ID (-25)

#define STL_ERR_DEVICE_NOT_MAPPED (-26)

#define STL_ERR_LONG_READ_5_LSB_NOT_0 (-27)

#define STL_ERR_TOO_MANY_WRONG_SYMBOLS_IN_WM (-28)

#define STL_ERR_DEVICE_NOT_INITIALIZED (-29)

#define STL_ERR_PP194_DEVICE_ID_MUST_BE_EVEN (-30)

#define STL_ERR_DEVICE_BUSY

 (-51)

#define STL_ERR_DEVICE_WAS_FORCED_HW_RESET_DURING_STOP (-52)

#define STL_ERR_PCI_READ_WIDTH_NOT_MODULU_4 (-100)

#define STL_ERR_BUSLIST_ALREADY_EXISTS (-2000)

 ///User tried to create a buslist that was previously created.

#define STL_ERR_ELEMENT_ALREADY_EXISTS (-2001)

 ///

#define STL_ERR_DATABLOCK_ALREADY_EXISTS (-2002)

 ///

#define STL_ERR_DATABLOCK_SIZE_ASSINGMENT_ERROR (-2003)

#define STL_ERR_DATABLOCK_SIZE_TOO_SMALL (-2004)

#define STL_ERR_MAPPING_UNREADY_CONSTRUCTS (-2005)

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 145

#define STL_ERR_BUSLIST_CONTAINS_TOO_MANY_ELEMENTS (-2006)

#define STL_ERR_BUSLIST_IS_RUNNING (-2007)

#define STL_ERR_CODE_IN_REG_1A_INCORRECT (-2008)

#define STL_ERR_WRITING_TO_UNINITIALIZED_DATABLOCK (-2009)

#define STL_ERR_WRITING_TO_UNINITIALIZED_ELEMENT (-2010)

#define STL_ERR_WRITING_TO_UNMAPPED_DATABLOCK (-2011)

#define STL_ERR_ACCESSING_INVALID_DEVICE_ID (-2012)

#define STL_ERR_REQUESTED_ID_EXCEEDED_MAX_ALLOWED (-2013)

#define STL_ERR_ELEMENT_IS_RUNNING (-2014)

#define STL_ERR_DATABLOCK_IS_RUNNING (-2015)

#define STL_ERR_REQUESTED_ID_UNINITIALIZED (-2016)

#define STL_ERR_DATABLOCK_NOT_MAPPED_TO_ELEMENT (-2017)

#define STL_ERR_ELEMENT_NOT_MAPPED_TO_BUSLIST (-2018)

#define STL_ERR_READ_DATA_WHILE_TX_NOT_ALLOWED (-2019)

#define STL_ERR_COMMAND_MODE_CODE_NOT_SUPPORTED (-2020)

#define STL_ERR_READING_EMPTY_BUFFER (-2021)

#define STL_ERR_NOT_IN_RUNNING_MODE (-2022)

#define STL_ERR_STOP_RUN_FAILED (-2023)

#define STL_ERR_START_RUN_FAILED (-2024)

#define STL_ERR_GET_TIMETAG_FAILED_DATA_INCONSISTENT (-2025)

#define STL_ERR_TIME_REQUESTED_NOT_IN_VALID_RANGE (-2026)

#define STL_ERR_TIME_VALUE_REQUESTED_IS_INVALID (-2027)

#define STL_ERR_MESSGE_NUMBER_TO_INSERT_ERROR_IS_INVALID (-2028)

#define STL_ERR_WORD_NUMBER_TO_INSERT_ERROR_IS_INVALID (-2029)

#define STL_ERR_NO_ERROR_SPECIFIED (-2030)

#define STL_ERR_SYNC_INJECTION_PARAM_INVALID (-2031)

#define STL_ERR_SPECIFIED_ERROR_INJECTION_NOT_SUPPORTED (-2032)

#define STL_ERR_ZERO_CROSSING_INJECTION_PARAM_INVALID (-2033)

#define STL_ERR_DEVICE_MEMORY_FULL (-2034)

/// During mRt start the datablock's allocation spiled over the memory limit of the device

#define STL_ERR_RUI_0_ENABLE_IS_REDUNDANT_IN_PP194

 (-2035)

#define STL_ERR_ELEMENT_NOT_INITIALIZED (-2036)

#define STL_ERR_DATABLOCK_SIZE_TOO_BIG (-2037)

#define STL_ERR_BUSLIST_IS_NOT_IN_RUNNING_MODE (-2038)

#define STL_ERR_SPECIFIED_PROTOCOL_NOT_SUPPORTED (-2039)

#define STL_ERR_INVALID_PROTOCOL_TYPE (-2040)

#define STL_ERR_MULTI_SHOTS_NOT_SUPPORTED (-2041)

#define STL_ERR_BUSLIST_PASSIVE_PHASE_NOT_FOUND (-2042)

#define STL_ERR_DATA_VECTOR_OVERFLOW (-2043)

#define STL_ERR_DEPRECATED_FUNCTION (-2044)

#define STL_ERR_INVALID_ARGUMENTS (-2200)

#define STL_ERR_NULL_POINTER (-2201)

#define STL_ERR_READ_FAILED

 (-2202)

#define STL_ERR_WRITE_FAILED (-2203)

//#define STL_ERR_DEVICE_BUSY

 (-2204)

#define STL_ERR_TIMETAG_ZERO_READ_AGAIN (-2205)

#define STL_ERR_CANNOT_SEND_ON_RX_CHANNEL (-

2300)// Arinc 429

#define STL_ERR_CANNOT_GET_ON_TX_CHANNEL (-

2301)// Arinc 429

#define STL_ERR_TIMEOUT

 (-2302)// Arinc 429

#define STL_ERR_IO_OVERFLOW

 (-2303)// Arinc 429

#define STL_ERR_A429_SIGNATURE_MISSING (-2304)// Arinc 429

#define STL_ERR_A429_DEVICE_ALREADY_OPENED (-2305)// Arinc 429

// licensing

#define STL_ERR_LICENSE_PARAM_NOT_FOUND (-2350)

#define STL_ERR_LICENSE_STRING_NOT_FOUND (-2351)

#define STL_ERR_LICENSE_STRING_TOO_SHORT (-2352)

#define STL_ERR_LICENSE_INVALID_FEATURE (-2353)

#define STL_ERR_LICENSE_INVALID_CHECKSUM (-2354)

#define STL_ERR_LICENSE_INVALID_KEY (-2355)

#define STL_ERR_LICENSE_PROTOCOL_DISABLED (-2356)

#define STL_ERR_LICENSE_SINGLE_DEVICE_PERMISSION (-2357)

#define STL_ERR_LICENSE_DIGIBUS_REQUIRE_1553 (-2358)

#define STL_ERR_LICENSE_BUSLIST_CONTAINS_UNLICENSED_PP194_MESSAGE (-2359)

#define STL_ERR_LICENSE_BUSLIST_CONTAINS_UNLICENSED_1553_MESSAGE (-2360)

#define STL_ERR_LICENSE_H009_UNLICENSED (-2361)

#define STL_ERR_LICENSE_1553_UNLICENSED (-2362)

#define STL_ERR_LICENSE_PP194_UNLICENSED (-2363)

#define STL_ERR_LICENSE_EBR_UNLICENSED (-2364)

#define STL_ERR_LICENSE_DIGIBUS_F16_UNLICENSED (-2365)

#define STL_ERR_LICENSE_ENGINEERING_UNITS_UNLICENSED (-2366)

#define STL_ERR_LICENSE_WIRING_FAULT_LOCATION_UNLICENSED (-2367)

#define STL_ERR_LICENSE_SMART_CYBER_EMULATION_UNLICENSED (-2368)

#define STL_ERR_LICENSE_NO_LICENSED_FEATURES_FOUND (-2369)

#define STL_ERR_LICENSE_REQUIRED_AND_NOT_FOUND_1553_ONLY_ENABLED (-2370)

#define STL_ERR_FUNCTION_NOT_IMPLEMENTED (-3000)

#define STL_ERR_SW_POINTER_INPUT_IS_ODD (-3001)

#define STL_ERR_ODD_NUMBER_OFF_ELEMENTS_IN_HOST_BUFFER (-3002)

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 146

#define STL_ERR_LICENSE_FILE_MISSING_OR_DAMAGED (-3003)

#define STL_ERR_LICENSE_FILE_EMPTY (-3004)

#define STL_ERR_ETH_W_SOCKET_FAIL (-7000)

#define STL_ERR_ETH_R_SOCKET_FAIL (-7001)

#define STL_ERR_ETH_W_SOCKET_ADDRESS_ERROR (-7002)

#define STL_ERR_ETH_R_SOCKET_ADDRESS_ERROR (-7003)

#define STL_ERR_ETH_W_DATA_BUFF_SIZE (-7004)

#define STL_ERR_ETH_W_REQUEST_TIMEOUT (-7005)

#define STL_ERR_ETH_R_SENDTO_REQUEST_TIMEOUT (-7006)

#define STL_ERR_ETH_R_RECVFROM_REQUEST_TIMEOUT (-7007)

#define STL_ERR_ETH_SERVER_LIST_ITEMS (-7008)

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 147

8.2 Appendix B – mcx_A429ChannelInfo

//Arinc429
typedef struct mcxA429ChannelInformation
{
 /// The size in bytes of this structure.
 /// Caller must set this field to sizeof(stla429ChannelInformationStructure).
 /// This is to prevent buffer overwrite when compilers are incompatible or
definitions change.
 UINT32 dwStructureSize;
 UINT32 dwUserTag; // Arbitrary user provided value
 union {
 struct /*characteristics*/ {
 UINT32 channelIsAvailable : 1; // true = available for use
 UINT32 channelRunning : 1; // true = running, false = not running
 UINT32 channelFailure : 1; // true = failure detected
 UINT32 channelIsTX : 1; // true = configured as TX, false = as RX
 UINT32 channelIsHighSpeed : 1; // true = configured for high speed, else
low speed
 UINT32 channelSupportsTX : 1; // true = can be configured as TX
 UINT32 channelSupportsRX : 1; // true = can be configured as RX
 UINT32 channelSupportsHighSpeed : 1; // true = can be configured for high
speed
 UINT32 channelSupportsLowSpeed : 1; // true = can be configured for low
speed
 };
 UINT32 dwFlags; // above struct as integer
 };
 UINT32 dwTransferSize; // Size of transfer buffer required for bulk RX
 UINT32 dwCardNumber; // Card number on which channel is located
 UINT32 dwReserved1; // Padding
} mcx_A429ChannelInfo;

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 148

8.3 Appendix C – External Loopback Device to Device

Code implementation:

// transmit the command of type RT2BC on bus A from BC device to MultiRT device and
then on bus B
// RT is simulated in MultiRT side, data is incremental
// command is transmitted once
// data is checked in the BC side
// then devices are switched, repeating the test
// this test is a blocking command
// 4 results are returned - device0A, device0B, device1A, device1B
// NOTE - assuming devices are initialized

INT16 mcx_TestExternalLoopback_DevicetoDevice(UINT16 device0, UINT16 device1, UINT16* resultD0A,
UINT16* resultD0B, UINT16* resultD1A, UINT16* resultD1B, bool* badDataFound){

 if (((INT16)0 > device0) || ((INT16)sitalMaximum_DEVICES <= device0)) return
STL_ERR_INVALID_DEVICE_NUMBER;
 if (((INT16)0 > device1) || ((INT16)sitalMaximum_DEVICES <= device1)) return
STL_ERR_INVALID_DEVICE_NUMBER;

 INT16 iResult = 0;
 UINT16 lBus = 0x80;
 unsigned short rxStt0 = 0;
 unsigned short txStt0 = 0;
 unsigned short rxStt1 = 0;
 unsigned short txStt1 = 0;
 UINT16 BusList0 = 0;
 UINT16 Element0 = 0;
 UINT16 DB0 = 0;
 UINT16 BusList1 = 1;
 UINT16 Element1 = 1;
 UINT16 DB1 = 1;
 UINT16 datablock32_0[64];
 UINT16 datablock32_1[64];
 UINT16 command0 = 0xC20;// RT1 to BC, 32 words
 UINT16 command1 = 0xC20;// RT1 to BC, 32 words
 UINT16 localD0 = 0;
 UINT16 localD1 = 1;

 // results
 INT16 results = 0;
 UINT16 blockStatus = 0;
 UINT16 buffer[32];
 UINT16 status1 = 0;
 UINT16 status2 = 0;
 UINT16 tTag = 0;

 for(int i = 0 ; i < 2 ; i++)/* iteration for device 0 to 1 and then device 1 to 0*/{

 iResult = mcx_Stop2(localD1); if (iResult < 0) return iResult;
 iResult = mcx_Stop2(localD0); if (iResult < 0) return iResult;

 if((i % 2) == 0)
 {
 localD0 = device0;
 localD1 = device1;
 }
 else
 {
 localD0 = device1;
 localD1 = device0;
 }
 for(int j = 0 ; j < 2 ; j++)/*bus selection..*/{
 if((j % 2) == 0) lBus = 0x80;

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 149

 else lBus = 0x00;

 iResult = mcx_FreeBusList(localD0, BusList0);
 iResult = mcx_FreeBusList(localD1, BusList1);

 UINT16 userPort = MIL_STD_1553_AND_PP194 | MultiRT;
 iResult = mcx_SetUserPort(localD1, userPort); if(iResult < 0) return iResult;
 userPort = MIL_STD_1553_AND_PP194;
 iResult = mcx_SetUserPort(localD0, userPort); if(iResult < 0) return iResult;

 // MultiRT create and go..
 iResult = mcx_EnableRts(localD1, 0xFFFFFFFF); if(iResult < 0) return
iResult;// Enable all RTs, incremental data is injected
 iResult = mcx_Create_BusList(localD1, BusList1); if(iResult < 0) return
iResult;
 iResult = mcx_Create_BusList_Element (localD1, Element1, command1, lBus,
0x0000, rxStt1, txStt1); if(iResult < 0) return iResult;
 iResult = mcx_Create_Element_DataBlock (localD1, DB1, 0, datablock32_1, 64);
if(iResult < 0) return iResult;
 iResult = mcx_Map_DataBlock_To_Element (localD1, Element1, DB1); if(iResult <
0) return iResult;
 iResult = mcx_Map_Element_To_BusList (localD1, BusList1, Element1); if(iResult
< 0) return iResult;

 for(int idx = 0 ; idx < 32 ; idx++) datablock32_1[idx] = 0x5555 + i;

 iResult = mcx_Start(localD1, BusList1, 0); if (iResult < 0) return iResult;
 //Sleep(1);

 // BC side..
 iResult = mcx_EnableRts(localD0, 0); if(iResult < 0) return iResult;
 iResult = mcx_Create_BusList(localD0, BusList0); if(iResult < 0) return
iResult;
 iResult = mcx_Create_BusList_Element (localD0, Element0, command0, lBus,
0x0000, rxStt0, txStt0); if(iResult < 0) return iResult;
 iResult = mcx_Create_Element_DataBlock (localD0, DB0, 0, datablock32_0, 64);
if(iResult < 0) return iResult;
 iResult = mcx_Map_DataBlock_To_Element (localD0, Element0, DB0); if(iResult <
0) return iResult;
 iResult = mcx_Map_Element_To_BusList (localD0, BusList0, Element0); if(iResult
< 0) return iResult;

 iResult = mcx_Start(localD0, BusList0, 1); if (iResult < 0) return iResult;

 // let the frame end
 Sleep(1);

 blockStatus = 0;
 // get the results..
 results = mcx_Get_Element_Results(localD0, BusList0, 0, &blockStatus, buffer,
32, &status1, &status2, &tTag); if (results < 0) return results;
 if(i == 0 && j == 0) *resultD0A = blockStatus;
 if(i == 0 && j == 1) *resultD0B = blockStatus;
 if(i == 1 && j == 0) *resultD1A = blockStatus;
 if(i == 1 && j == 1) *resultD1B = blockStatus;

 bool badData = false;
 // check data
 for(int idx2 = 0 ; idx2 < 32 ; idx2++)
 {
 if(datablock32_1[idx2] != 0x5555 + i)
 {
 badData = true;
 break;
 }
 }
 *badDataFound = badData;
 iResult = mcx_Stop2(localD1); if (iResult < 0) return iResult;

 }

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 150

 }
 return iResult;
}

 MCX API – Programmer and Reference Guide March 2020

Sital Technology Ltd. 17 Atir Yeda St., Kfar-Saba, 44643, ISRAEL Page 151

17 Atir Yeda St., Kfar-Saba, ISRAEL 44643

Email: info@sitaltech.com

Website: http://www.sitaltech.com

The information provided in this User’s Guide is believed to be accurate;

however, no responsibility is assumed by Sital Technology for its use, and

no license or rights are granted by implication or otherwise in connection

therewith. Specifications are subject to change without notice.

Please visit our Web site at http://www.sitaltech.com for the latest

information.

© All rights reserved. No part of this User’s Guide may be reproduced or
transmitted in any form or by any means, electronic, mechanical,

photocopying, recording, or otherwise, without the prior written

permission by Sital Technology.

mailto:info@sitaltech.com
http://www.sitaltech.com/
http://www.sitaltech.com/

