ARINC 429 IP Core for FPGAs

ARINC429IP

ARINC 429 IP Core with modular transmitters and receivers

Compact, Robust, Reliable MIL-STD-IP-Cores

Key Features and Benefits

- ARINC 429 specification compatible
- Separated channels for ARINC 429 Data Transmit and Receive
- 32 bits wide, programmable depth, separated FIFO buffers for transmit and receive
- Includes noise filtering mechanism to enhance receiver robustness
- Programmable data rate on each channel (12.5/100 Kbps)
- Programmable label recognition with 256 Labels for each Receiver
- Programmable parity: Even, Odd or No-parity (32\textsuperscript{nd} bit as data)
- FIFO full/empty indication
- Supports standard ARINC 429 line drivers/receivers with two bits data and slope bit controls
- Multiple running clock options to reduce design time domains
- Small FPGA area utilization
- Modular architecture allowing flexible implementations. Any number of transmitters and receivers available in a single Netlist.
- Provided with full verification environment
- Based on vendor and technology independent VHDL code

More products from Sital:

- MIL-STD-1553 IP Core, DDC® compatible with local bus interface
- MIL-STD-1553 Discrete Components Transceiver
- MIL-STD-1553 Testers.
- MIL-STD-1553 Design Services
- ARINC 429 IP Core
- PCI IP core

Designed from ground up for use in aerospace, avionics and military, Sital's IP products, offer uniquely compact, robust and reliable solutions for any PLD/FPGA and ASIC device.

More information available at www.sitaltech.com
ARINC 429 Tx/Rx Core Operation

The ARINC429IP Core is divided between two independent modules for transmit (ARINC429IP-TX) and receive (ARINC429IP-RX).
A user can order any combination of transmitters and receivers which are packaged under the same FPGA netlist.
Each ARINC 429 channel (Rx / Tx) has 32 bits wide FIFO memory. (FIFO depth is selectable by the user).

ARINC 429 Transmitter
Whenever a data is written into to the Tx_FIFO, the ARINC429IP-TX Core will start transmitting this data to the serial Tx ports based on the Tx channel control register configuration. Data will be transmitted consequentially word after word until the Tx_FIFO will become empty.
Tx_FIFO status (Empty/Full) and Number_Of_Words are reported in the dedicated ports. Once FIFO_Full is asserted, there is no option to write new words to the Tx_FIFO.

ARINC 429 Receiver
The ARINC429IP-RX Core receives data from the ARINC 429 bus and converts it to the local bus. This core performs serial-to-parallel conversion, gap/parity check as well as baud-rate and pulse-width validation on the received data.
A noise filtering mechanism is implemented to enhance the receiver robustness and improve bit decoding. The received ARINC 32-bit word is checked for correct decoding and label matching (based on the Control Register). Invalid ARINC words or words which do not meet the necessary matching are ignored and are not loaded into the FIFO.
Each ARINC429IP-RX core contains a Programmable Labels Table which stores up to 256 labels for label recognition. If label-compare is enabled (in the control register), the Rx Core will store in its FIFO only words which passed label matching to the labels in the Table. Specific control lines are used to reset and program labels in the Labels Table.

Advanced Verification
To ensure a fully reliable and robust product the core was developed using an advanced verification environment that includes a Random-Generation engine, Code-Coverage and assertion tools.
All ARINC429 functions and performance requirements were verified.

Simple Integration
In order to simplify the integration of the core, a sample VHDL design that uses the core is provided, including:
- A comprehensive user’s manual.
- A VHDL gate level model of the core for the target technology.
- A Transceiver VHDL model that connects the core with 2 buses.
- A bus tester VHDL model that generates ARINC 429 messages and checks the return replies.
- A top Test bench that instantiates all of the components to a working example.
- A simulation script for compiling and running the core.

About Sital Technology
Founded in 1993, Sital Technology is a leading provider of IP cores and products for Mil-Std-1553, ARINC 429 and Can bus.

SITAL Technology’s key quality resource is its creative, talented and professional staff. Our engineers are veterans of the Israeli Air Force, who served in the technical units of the F-16 avionics systems. They gained knowledge and experience with the MIL-STD-1553 standard from the bottom up, both as design engineers for MIL-STD-1553 components and as technicians working on the aircrafts.

Among our many customers you can find NASA, Israeli Aircraft Industries (IAI), Rafael, Elbit, Astronautics, Tadiran, Israeli Ministry of Defense, Elta, Honeywell, BAE Systems, RADA and many others.